• Title/Summary/Keyword: Investment Parameter

Search Result 51, Processing Time 0.026 seconds

Elimination of Outlier from Technology Growth Curve using M-estimator for Defense Science and Technology Survey (M-추정을 사용한 국방과학기술 수준조사 기술성장모형의 이상치 제거)

  • Kim, Jangheon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.76-86
    • /
    • 2020
  • Technology growth curve methodology is commonly used in technology forecasting. A technology growth curve represents the paths of product performance in relation to time or investment in R&D. It is a useful tool to compare the technological performances between Korea and advanced nations and to describe the inflection points, the limit of improvement of a technology and their technology innovation strategies, etc. However, the curve fitting to a set of survey data often leads to model mis-specification, biased parameter estimation and incorrect result since data through survey with experts frequently contain outlier in process of curve fitting due to the subjective response characteristics. This paper propose a method to eliminate of outlier from a technology growth curve using M-estimator. The experimental results prove the overall improvement in technology growth curves by several pilot tests using real-data in Defense Science and Technology Survey reports.

Optimal Sizing Evaluation Model of Building Cogeneration System (건물용 열병합발전 시스템의 적정규모 산정을 위한 최적 투자모형)

  • Park, Jong-Seong;Won, Seon-Jae;Kim, Jung-Hoon;Park, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.117-119
    • /
    • 1995
  • For an effective application of the cogeneration system for commercial and industrial buildings, we need to develop a relevant model to determine the long-term based optimal sizing of the cogeneration system considering electrical and thermal load demands, buy and sell contracts with electric utility and the annual production cost. In assessing the optimal sizing of cogeneration, we have to consider both economic parameters and their capacity expansion for the increased electrical and thermals demand in the future. In this paper, we propose a mathematical model for the optimal sizing of cogeneration systems considering annual production costs and other economic parameter such as, lifetime of the equipment, time value of the capital, etc. In the case study, we thoroughly examine the effects of the economic parameters and determine the optimal size of the sample system. In addition, we calculate the payback period of the cogeneration investment.

  • PDF

Efficiency criteria for optimization of separation cascades for uranium enrichment

  • Sulaberidze, Georgy;Zeng, Shi;Smirnov, Andrey;Bonarev, Anton;Borisevich, Valentin;Jiang, Dongjun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.126-131
    • /
    • 2018
  • As it is known, uranium enrichment is carried out on industrial scale by means of multistage separation facilities, i.e., separation cascades in which gas centrifuges (GCs) are connected in series and parallel. Design and construction of these facilities require significant investment. So, the problem of calculation and optimization of cascade working parameters is still relevant today. At the same time, in many cases, the minimum unit cost of a product is related to the cascade having the smallest possible number of separation elements/GCs. Also, in theoretical studies, it is often acceptable to apply as an efficiency criterion the minimum total flow to supply cascade stages instead of the abovementioned minimum unit cost or the number of separation elements. In this article, cascades with working parameter of a single GC changing from stage to stage are optimized by two of the abovementioned performance criteria and are compared. The results obtained allow us to make a conclusion about their differences.

A Study on major nations and Koea's FTA policy (주요국의 통상정책과 한국의 FTA 정책방향에 관한 연구)

  • Kim Jongkwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.415-438
    • /
    • 2004
  • This dissertation is assumed to continuously occur adjustment cost on present investment. So, I derived from time-nonseparable production-based CAPM and tested the performance of model through data. I also compared time-nonseparable production-based CAPM with time-separable production-based CAPM and CCAPM, CAPM through testifying the performance of model. At the part of applied application, I estimated time-nonseparable PCAPM-betas. The data of Korea consists of 320 listed companies on Korea Stock Exchange (KOSPI) from first quarter 1987 to first quarter 2002. This data also is categorized by scale and industries. Additionally, I estimated time-nonseparable PCAPM-betas through 500 listed companies of New York Stock Exchange (NYSE) from first quarter 1973 to first quarter 2002. I observed the statistical significance of 230 firms by 320 companies in Korea. After that, I compared time-nonseparable PCAPM-betas by firms with time-separable production-based CAPM-betas and CCAPM-betas, CAPM-betas through individual firms. At empirical test, I found that estimated parameter of adjustment cost on time-nonseparable production-based CAPM by scale and industries in Korea had positive value and statistical significance, Moreover, this approach proved to resolve the underestimation of adjustment cost on time-separable production-based CAPM by scale and industries. I also found that the time-nonseparable PCAPM performed better than time-separable production-based CAPM and CCAPM, CAPM. The result from U.S data proved to have similarity to that of Korea. Specifically, I found that time-nonseparable PCAPM-betas by firms performed better than CAPM-betas on individual firms in Korea.

  • PDF

Modelling creep behavior of soft clay by incorporating updated volumetric and deviatoric strain-time equations

  • Chen Ge;Zhu Jungao;Li Jian;Wu Gang;Guo Wanli
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 2023
  • Soft clay is widely spread in nature and encountered in geotechnical engineering applications. The creep property of soft clay greatly affects the long-term performance of its upper structures. Therefore, it is vital to establish a reasonable and practical creep constitutive model. In the study, two updated hyperbolic equations based on the volumetric creep and deviatoric creep are respectively proposed. Subsequently, three creep constitutive models based on different creep behavior, i.e., V-model (use volumetric creep equation), D-model (use deviatoric creep equation) and VD-model (use both volumetric and deviatoric creep equations) are developed and compared. From the aspect of prediction accuracy, both V-model and D-model show good agreements with experimental results, while the predictions of the VD-model are smaller than the experimental results. In terms of the parametric sensitivity, D-model and VD-model are lower sensitive to parameter M (the slope of the critical state line) than V-model. Therefore, the D-model which is developed by incorporating the updated deviatoric creep equation is suggested in engineering applications.

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

A Study on Security Authentication Vector Generation of Virtualized Internal Environment using Machine Learning Algorithm (머신러닝 알고리즘이 적용된 가상화 내부 환경의 보안 인증벡터 생성에 대한 연구)

  • Choi, Do-Hyeon;Park, Jung Oh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.33-42
    • /
    • 2016
  • Recently, the investment and study competition regarding machine running is accelerating mainly with Google, Amazon, Microsoft and other leading companies in the field of artificial intelligence. The security weakness of virtualization technology security structure have been a serious issue continuously. Also, in most cases, the internal data security depend on the virtualization security technology of platform provider. This is because the existing software, hardware security technology is hard to access to the field of virtualization and the efficiency of data analysis and processing in security function is relatively low. This thesis have applied user significant information to machine learning algorithm, created security authentication vector able to learn to provide with a method which the security authentication can be conducted in the field of virtualization. As the result of performance analysis, the interior transmission efficiency of authentication vector in virtualization environment, high efficiency of operation method, and safety regarding the major formation parameter were demonstrated.

Economic Feasibility Study for Commercial Production of Bio-hydrogen (해양바이오수소개발 사업의 상업생산을 위한 예비경제성평가)

  • Park, Se-Hun;Yoo, Young-Don;Kang, Sung Gyun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.225-234
    • /
    • 2016
  • This project sought to conduct an economic feasibility study regarding the commercial production of bio-hydrogen by the marine hyperthermophilic archaeon, Thermococcus onnurineus NA1 using carbon monoxide-containing industrial off-gas. We carried out the economic evaluation of the bio-hydrogen production process using the raw material of steel mill by-product gas. The process parameter was as follows: $H_2$ production rate was 5.6 L/L/h; the conversion of carbon monoxide was 60.7%. This project established an evaluation criterion for about 10,000 tonne/year. Inflation factors were considered as 3%. The operating costs were recalculated based on prices in 2014. The total investment required for development was covered 30% by capital and 70% by a loan. The operation cost for the 0.5-year test and integration, and the cost for the first three months in the 50% production period were considered as the working capital in the cost estimation. The costs required for the rental of office space, facilities, and other related costs from the construction through to full-scale production periods were considered as continuing expenses. Materials, energy, waste disposal and other charges were considered as the operating cost of the development system. Depreciation, tax, maintenance and repair, insurance, labor, interest rate charges, general and administrative costs, lubrication and miscellaneous expenses were also calculated. The hydrogen price was set at US$ 4.15/kg for the economic evaluation. As a result, the process was considered to be economical with the payback period of 6.3 years, NPV of 18 billion Won and IRR of 26.7%.

A Critical Evaluation of Dichotomous Choice Responses in Contingent Valuation Method (양분선택형 조건부가치측정법 응답자료의 실증적 쟁점분석)

  • Eom, Young Sook
    • Environmental and Resource Economics Review
    • /
    • v.20 no.1
    • /
    • pp.119-153
    • /
    • 2011
  • This study reviews various aspects of model formulating processes of dichotomous choice responses of the contingent valuation method (CVM), which has been increasingly used in the preliminary feasibility test of Korea public investment projects. The theoretical review emphasizes the consistency between WTP estimation process and WTP measurement process. The empirical analysis suggests that two common parametric models for dichotmous choice responses (RUM and RWTP) and two commonly used probability distributions of random components (probit and logit) resulted in all most the same empirical WTP distributions, as long as the WTP functions are specified to be a linear function of the bid amounts. However, the efficiency gain of DB response compared to SB response were supported on the ground that the two CV responses are derived from the same WTP distribution. Moreover for the exponential WTP function which guarantees the non-negative WTP measures, sample mean WTP were quite different from median WTP if the scale parameter of WTP function turned out to be large.

  • PDF

Finding Optimal Conditions for the Densification Process of Carbon Materials (탄소 소재 치밀화 공정의 밀도향상을 위한 최적 조건 설정)

  • Kwon, Choonghee;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.76-82
    • /
    • 2017
  • Recently, the material industry in the world has started appreciating the value of new materials that can overcome the limitation of steel material. In particular, new materials are expected to play a very important role in the future industry, demonstrating superior performance compared to steel in lightweight materials and ability to maintain in high temperature environments. Carbon materials have recently increased in value due to excellent physical properties such as high strength and ultra lightweight compared to steel. However, they have not overcome the limitation of productivity and price. The carbon materials are classified into various composites depending on the purpose of use and the performance required. Typical composites include carbon-glass, carbon-carbon, and carbon-plastic composites. Among them, carbon-carbon composite technology is a necessary technology in aviation and space, and can be manufactured with high investment cost and technology. In this paper, in order to find the optimal conditions to achieve productivity improvement and cost reduction of carbon material densification process, the correlation between each process parameters and results of densification is first analyzed. The main process parameters of the densification process are selected by analyzing the correlation results. And then a certain linear relationship between major process variables and density of carbon materials is derived by performing a regression analysis based on the historical production result data. Using the derived casualty, the optimal management range of major process variables is suggested. Effective process operation through optimal management of variables will have a great effect on productivity improvement and manufacturing cost reduction by shortening the lead time.