• 제목/요약/키워드: Inverter-fed

검색결과 424건 처리시간 0.09초

인버터구동 선형유도전동기의 특성해석에 관한 연구 (Finite Element Analysis of Inverter-fed Linear Induction Motors)

  • 임달호;김창업;김한종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.53-55
    • /
    • 1995
  • This paper presents the characteristics of linear induction motors fed by a voltage source PWM inverter. In the calculation, 2D finite element method is used considering the movement by moving mesh. Integro-differential approach is adopted for the copper loss calculation considering the skin effect.

  • PDF

ANALYSIS OF THREE PHASE INDUCTION MOTOR FED BY P.N.W BOXES ALGORITHM

  • Nasr, M.Sh;Abdul-baki, E.M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1035-1040
    • /
    • 1989
  • This paper describes first Boxes algorithm as a good method to generate the pulse patterns for a pulse width modulated inverter which has a good characteristics and simple to excute. Second we present the motor analysis fed by P.W.M. inverter in steady-state operation. In this analysis we improve the MRF ( Multiple Reference Frames ) to can be easy apply to analyse all the induction motor parameters. Finally we presented all the results obtained for a 3-phase induction motor.

  • PDF

인버터 구동 유도전동기에서 과도전압의 측정과 분석 (Measurement and Analysis of Transient Voltage for an Inverter-fed Induction Motor)

  • 길경석;류길수;박대원;조영진;천상규;최수연
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.650-654
    • /
    • 2007
  • 유도전동기는 전기차량의 주요 동력원으로 광범위하게 사용되고 있으며, 유도전동기의 속도제어에 펄스변조 방식을 이용한 인버터의 사용이 증가하고 있다. 본 논문에서는 유도전동기의 인버터 구동시 발생하는 과도전압에 대해 연구하였다. 전원 케이블의 길이에 따른 과도전압의 크기를 측정하였으며, 시간변화율과 운전주파수에 의한 영향을 분석하였다. 실험결과, 케이블의 길이가 길어짐에 따라 과도전압의 최대값이 증가하였으며 50m 케이블에서 과도전압의 크기는 최대 3.3PU까지 측정되었다. 이러한 현상은 진행파의 반사와 투과에 의해 발생하며, 유도전동기의 인버터 구동시 케이블의 길이에 따른 과도전압의 영향을 고려하여 유도전동기의 절연을 설계해야 할 것이다.

Extended Boost Single-phase qZ-Source Inverter for Photovoltaic Systems

  • Shin, Hyun-Hak;Cha, Honnyong;Kim, Hongjoon;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.918-925
    • /
    • 2014
  • This study presents an extended boost single-phase qZ-source DC-AC inverter for a single-phase photovoltaic system. Unlike the previously proposed single-phase qZ-source and semi-qZ-source inverters that achieve the same output voltage as that of the traditional voltage-fed full-bridge inverter, the proposed inverter can obtain higher output than input voltage. The proposed inverter also shares a common ground between DC input voltage and AC output voltage. Thus, possible ground leakage current problem in non-isolated grid-tied inverters can be eliminated with the proposed inverter. A 120 W prototype inverter is built and tested to verify the performance of the proposed inverter.

고주파 인버터의 특성해석 및 출력주파수 추종제어 (The characteristic analyses and output frequency tracking control of a high frequency inverter)

  • 이종무;김영석;조기연
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.597-602
    • /
    • 1987
  • This paper proposes a voltage-fed high frequency resonant inverter having variable voltage variable frequency(VVVF) control function. VVVF control is performed by PWM-TRC method in the boost type chopper and PFM-TRC method in the high frequency resonant inverter. This circuit is suitable for induction heating and melting power supply in industry. The operating characteristics of this inverter are discussed from a theoretical point of view. The results of operating characteristic analyses are given leading to complete designing data.

  • PDF

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

배터리 구동 전자레인지를 위한 직렬 공진형 풀브릿지 인버터 (Series Resonant Full Bridge Inverter for Battery-fed Microwave Oven)

  • 鄭 龍 采;韓 盛 軫
    • 전력전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.165-170
    • /
    • 2002
  • 이단 전력변환에 따른 시스템 효율의 감소문제를 해결하기 위해서 배터리 구동 전자레인지를 위한 직렬 공진형 풀 브릿지 인버터 회로를 제안한다. 이 회로는 기존의 HVT(High Voltage Transformer) 방식과 비교해서 콤팩트 한 크기를 가지며 무게 또한 가볍다. 또한, 주파수 제어로 전자레인지의 출력단계를 조절할 수 있다. 본 논문에서는 회로 동작을 이해하기 위해서 동작원리를 자세히 설명하였다. 또한, 1[kW] 소비전력을 갖는 프롯타입 인버터 회로를 제작하고 시험을 통하여 동작을 확인하였다.

VVVF 기능을 가진 전류형 고주파 인버터 회로 Topology (Current Fed H.F Inverter Topology with VVVF Function)

  • 이봉섭;김동희;신수국;구태근;배기훈;소정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.321-323
    • /
    • 1996
  • In this paper, it introduces a several circuit type of current-fed Full Bridge high frequence inverter with VVVF function. These inverter circuit presents various output control method according to on/off signal pattern of switches. also, It is certify that the accordance of characteristics is compared theoretical waveform with experimental results according to each signal pattern.

  • PDF

인버터 구동 유도 전동기의 최적 효율 모델 확인 실험 (Experimental Verification for Optimal Efficiency Model of Inverter-Fed Induction Motor)

  • 김재우;김병택;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.277-282
    • /
    • 2004
  • The optimal design of the rotor slot for inverter-fed induction motor was performed. The purpose of the paper is to verify the optimal point by experiment. A sensitivity analysis is performed, and the models near to an optimal point are selected. In the selecting process of models, 2 design variables with high sensitivity are selected out of 5 design variables. On the basis of the selected variables, 2 models near to the optimal point are decided. The tim e-step F.E.A and the experiment are performed. Optimal point and performance improvement of the optimal mode are verified.