• Title/Summary/Keyword: Inverter design

Search Result 1,198, Processing Time 0.023 seconds

Development of Inverter Monitoring system (소형 인버터 모니터링 시스템 개발)

  • Myoung Hee-chul;Park Dong-ho;Kim Jung-han
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.167-170
    • /
    • 2002
  • Recently, automation and communication technology leads to change of working condition to safe and convenient. Inverter control and monitoring software needs to apply and update to inverter applicable fields to make people feel easy and comfortable on working Install systems and drive them. in this paper, we introduced design methods of communication software and developed inverter control and monitoring system which can control and monitor inverters with serial communication.

  • PDF

A Design of High Speed SRM Drive System (고속 SRM 구동 시스템 설계)

  • Lee, Ju-Hyun;Kim, Bong-Chul;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.110-113
    • /
    • 2005
  • This paper proposes high speed SRM drive system for blower with a new 4-level inverter and precise excitation position generator. For the high speed blower, a proper 12/8 SRM is designed and analyzed. In order to get a fast build-up and demagnetization of excitation a current, now 4-level inverter system is proposed. The proposed 4-level inverter has additional charge capacitor, power switch and diode in the conventional asymmetric converter. The charged high voltage is supplied to the phase winding for fast current build-up, and demagnetization current is charged to additional capacitor of 4-level inverter. In addition, a precise excitation position generator can reduce turn-on and turn-off angle error according to sampling period of digital control system. The proposed high speed SRM drive system is verified by computer simulation.

  • PDF

Electrical Automatic Control System Based on the Internet of Things

  • Jiyong, Jin
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.784-793
    • /
    • 2022
  • Grid-connected distributed power generation has been widely used in green energy generation. However, due to the distributed characteristics, distributed power generation is difficult to be dynamically allocated and monitored in the electrical control process. In order to solve this problem, this research combined the Internet of Things (IoT) with the automatic control system of electrical engineering to improve the control strategy of the power grid inverter according to the characteristics of the IoT system. In the research, a connection system of the power grid inverter and the IoT controller were designed, and the application effect was tested by simulation experiments. The results showed that the power grid inverter had strong tracking control ability for current and power control. Meanwhile, the electrical control system of the IoT could independently and dynamically control the three-phase current and power. The given value was reached within 50 ms after the step signal was input, which could protect the power grid from being affected by the current. The overall system could realize effective control, dynamic control and protective control.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.

Design of Electronic Ballast for HID Lamps (HID 램프용 전자식 안정기의 설계)

  • 이치환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 1999
  • This paper presents a design techniques for an electronic ballast of HID lamps. An electronic ballast for HID lamps usually employs a high-frequeocy resonant inverter and voltage-to-frequency converter to control the outpIt and a half-bridge and series resonant circuit are chosen for the ballast First, to design PI controller, the inverter with V/F converter is modeled with a transfer function and the controller PI gains are determined. This paper shows that an integral controller is only needed to control the current. Second, a se1f-feedback controller is proposed. This structure, simple and robust, is analyzed and a feedback gain is determined by using the inverter model. Experirrental system is built with a commercial 250W high pressure sodium lamp and the results show a validity of the proposed ballast and the total efficiency is increased by 5%.

  • PDF

Method for Designing Impedance Network at Quasi Z-Source Inverter (Quasi Z-소스 인버터의 임피던스 네트워크 설계방법)

  • Yang, J.H.;Chun, T.W.;Lee, H.H.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.223-224
    • /
    • 2011
  • This paper presents the method to design the inductor and capacitor value considering the ripple component that may be generated by three operating states of the Quasi Z source inverter at the impedance network. Based on the analysis of each operation mode, the equations of the capacitor voltage and inductor current are derived. In order to simplify the design processing, design equations of the impedance network are derived where the capacitor voltage and inductor current are lineared. The validity of the design method is verified with the simulation result using PSIM.

  • PDF

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

High-Performance Voltage Controller Design Based on Capacitor Current Control Model for Stand-alone Inverters

  • Byen, Byeng-Joo;Choe, Jung-Muk;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1635-1645
    • /
    • 2015
  • This study proposes high-performance voltage controller design that employs a capacitor current control model for single-phase stand-alone inverters. The single-phase stand-alone inverter is analyzed via modeling, which is then used to design the controller. A design methodology is proposed to maximize the bandwidth of the feedback controller. Subsequently, to compensate for the problems caused by the bandwidth limitations of the controller, an error transfer function that includes the feedback controller is derived, and the stability of the repetitive control scheme is evaluated using the error transfer function. The digital repetitive controller is then implemented. The simulation and experimental results show that the performance of the proposed controller is high in a 1.5 kW single-phase stand-alone inverter prototype.

Filter Design Method for an Inverter System (인버터 시스템을 위한 필터설계 방법)

  • 오진석
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.63-69
    • /
    • 1997
  • This paper presents a design method for a filter application in a parts-of FA(Factory Automation). Normal equations for ripple voltage and current are derived in terms of dimensionless quantities, and these equations can be used directly to evaluate the values of LC-filter components, taking into consideration the effect of the ripple components on the rms value of the PWM-generated ripple components. Using describing function technique, design equations of the filter are derived. The data needed for the filter evaluation are the amplitude of current ripple and the frequency of square pulses delivered by the HE(Harmonic Elimination) inverter algorithm. Experimental results show that the design of the filter can be based on the method proposed and that the filter can provide a significant reduction of ripple components.

  • PDF

Method for Designing Parameters of Impedance Network at Quasi Z-Source Inverter (Quasi Z-소스 인버터의 임피던스 네트워크 파라미터 설계방법)

  • Yang, J.H.;Chun, T.W.;Lee, H.H.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.203-204
    • /
    • 2012
  • This paper presents the method to design the inductor and capacitor value considering the ripple component that may be generated by three operating states of the Quasi Z-source inverter at the impedance network. Based on the analysis of each operation mode, the equations of the capacitor voltage and inductor current are derived. In order to simplify the design processing, design equations of the impedance network are derived where the capacitor voltage and inductor current are lineared. The validity of the design method is verified with the simulation result using PSIM and experimental result using 32-bit DSP.

  • PDF