• Title/Summary/Keyword: Inverter cooling system

Search Result 71, Processing Time 0.019 seconds

Experimental Study on Performance Evaluation of System Air-Conditioner using Compressor of PWM or Inverter Method (Cooling and Heating Characteristics) (PWM 방식과 인버터 방식의 압축기를 사용한 시스템 에어컨의 성능평가에 대한 실험적 연구(냉난방 특성))

  • 전용호;김대훈;허삼행;권영철;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.738-743
    • /
    • 2003
  • In the present study, the heating and cooling characteristics of system air-conditioner using a PWM compressor or a BLDC inverter compressor are investigated by the psychometric calorimeter using air enthalpy method. Cooling and heating capacities, power inputs and COPs are measured at the low, moderate, high loads under the cooling and heating standard conditions. At cooling conditions, the capacity of the PWM system is larger than that of the inverter case. Due to large power input, however, low COPs are measured under total load ranges. At heating conditions, the capacity of the PWM method is a little larger than that of the inverter case, except high load range. Since power input is low, large COPs are measured at moderate and high load ranges, which are different from cooling data. This shows that the PW system compared with the inverter case has good energy consumption efficiency at moderate and high load ranges except low load range. And when the system A/C is operated under the cooling and heating standard conditions, COPs are nearly uniform at total load ranges.

Analytical Assessment on the Cooling Structure of In-wheel Driving Inverter (인휠 모터 구동용 인버터의 냉각구조에 대한 해석적 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • In-wheel driving inverter inside engine room sometimes operates in the harsh environment like high temperature of about $105^{\circ}C$. Especially, the size and power density of the inverter has become smaller and more increased. Thus, it is essential to manage the temperature of the inverter with IGBT (Insulated Gate Bipolar Transistor) switching devices for performance and endurance, because the temperature can be getting increase. In this paper, we performed the thermal flow analysis of inverter models with wave type and pin fin type cooling channels, and investigated the heat transfer characteristics of the inverter models using cooling water on channels at 8 L/min and $65^{\circ}C$. Also, we compared the thermal performance under various conditions such as coolant flow rate and layered power module structure. Therefore, we determined the feasibility of the initial inverter models and the thermal performance enhancement.

Water Cooling Pipe Structure for Heat-Dissipation of HEV Inverter System (HEV용 인버터의 방열을 위한 수냉식 배관구조)

  • Kim, Gyoung-Man;Woo, Byung-Guk;Lee, Yong-Hwa;Kang, Chan-Ho;Chun, Tae-Won;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • To dissipate the heat generated from the switching devices in the inverter system of HEV, the water cooling structure is proposed. The bolt type cooling structure has a problem such as water leakage for high pressure of water, therefore the proposed cooling structure applied pipe structure in the heat sink. The heat dissipation characteristics for various structures of water channel and distance between heat source and water channel was analyzed through the simulation. heat dissipation effect for two types of water cooling structures was investigated. Based on the simulation results, two types of water cooling system for 30kW inverter system of HEV were manufactured and the heat dissipation effect was verified.

Experimental Study on The Running Characteristics of Showcase Using Cold Storage System (과냉각 축냉시스템을 적용한 쇼케이스의 운전 특성에 대한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeongbae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2012
  • The purpose of this study was to show how tomaintain high efficiency and to use reasonably when being applied the cold-heat storage systems to the showcase. An experimental study was performed to manufacture the showcase system in a laboratory. Comparing the result at general operation condition with that of the new condition using ice storage system, this study showed the effects of the refrigerant sub-cooling, and with using inverter. Using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using the stored cold-heat after being discharged from the air cooling condenser during the day time. Through the experiments, the load transfer rate for the showcase using inverter and ice storage was estimated about 30.0%. And showed that the total power consumption of the showcase with inverter could be reduced about 37% than that of the showcase without inverter.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.

A Study on Cooling System for Efficiency Improvements of 3kW Outdoor Type Photovoltaic Inverter (3kW급 옥외형 태양광 인버터의 효율개선을 위한 냉각시스템 연구)

  • Kim, Min-Seok;Park, Eui-Jong;Kim, Yong-Jae;Oh, Bo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.617-624
    • /
    • 2014
  • Recently, photovoltaic inverter is received attention in photovoltaic with introduction of feed-in tariff. However, this inverter has problems such as inability to respond flexible at climate change due to its opening, and decrease of efficiency and lifetime due to its abnormal operation. To solve the problem, we desire to develop the eco-inverter which has a temperature control to respond easily on the change of temperature, and use the sealed structure not to affect the environment. In addition, we derive the optimal position of cooling system which is placed inside of inverter to minimize the power consumption, and proposed the effective measure to improve the efficient of inverter by deciding the number of cooling system.

Characteristics of Temperature Control in the Inverter Type Oil Coolers (인버터 타입 오일냉각기의 온도제어 특성에 관한 연구)

  • 이상호;이찬홍;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.233-236
    • /
    • 2003
  • In this Paper, the temperature control error and cooling characteristics of inverter typ coolers are evaluated to predict application validity of coolers under heating pattern and amount The temperature control error of coolers small in 15~70% range of the max. cooling ability. At less than 15% of max. cooling ability has the inverter type cooler a basic temperature control error $\pm0.5^{\circ}C$ and acts as on/off type coolers. The inverter type cooler is unsuitable for precision temperature control under the complex heating pattern. But PID control of cooler including the heating system is an alternative for the case.

  • PDF

A study of frequency control of an inverter heat pump for indoor air temperature adjustment (실내온도조절을 위한 인버터 열펌프의 주파수 제어에 관한 연구)

  • Park, Yun-Cheol;Min, Man-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1262-1272
    • /
    • 1997
  • An experimental study on the frequency control of an inverter heat pump to get the desired indoor room temperature has been conducted for the performance characteristics during the steady, 4, 8, and 16 step frequency operations. The heat pump model used in this study was operated to meet the experimental conditions of ASHRAE standard. The performance of the system was tested by measuring the temperature and pressure of the refrigerant, and cooling capacity, power consumption, etc. of the system. As the controlling frequency steps increased, the running time of the compressor increased as well as the electric consumption of the system and the cooling energy due to the wall heating load. However, the average cooling COP was improved.

Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve (전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성)

  • Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan;Ha, Soo-Jung;Jeon, Min-Ju;Park, Sung-Hyeon;Lee, Sang-Bong
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

Temperature Characteristics Analysis of Major Heating Region According to Cooling Device Location of Grid-Connected Photovoltaic Inverter (계통연계형 태양광 인버터의 냉각장치 위치에 따른 주요발열부 온도특성 해석)

  • Kim, Min-Seok;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.799-804
    • /
    • 2014
  • To combine to the power transmission, photovoltaic inverter is demanded, because the photovoltaic system is generated direct current power. However, photovoltaic inverter is sensitive to high temperature. In the temperature rising such as at noon and on summer, efficiency of machine is decreased due to the loss increment. Because this problem causes national energy loss according to the expanding the photovoltaic industry, countermeasure is demanded. There, in this paper, we installed a cooling system using a thermoelement regardless of the temperature. Also, we analyze the cooling effect according to the position of two fans which improve the effect maximize.