• Title/Summary/Keyword: Inversion Attack

Search Result 16, Processing Time 0.02 seconds

DPA-Resistant Low-Area Design of AES S-Box Inversion (일차 차분 전력 분석에 안전한 저면적 AES S-Box 역원기 설계)

  • Kim, Hee-Seok;Han, Dong-Guk;Kim, Tae-Hyun;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • In the recent years, power attacks were widely investigated, and so various countermeasures have been proposed, In the case of block ciphers, masking methods that blind the intermediate values in the algorithm computations(encryption, decryption, and key-schedule) are well-known among these countermeasures. But the cost of non-linear part is extremely high in the masking method of block cipher, and so the inversion of S-box is the most significant part in the case of AES. This fact make various countermeasures be proposed for reducing the cost of masking inversion and Zakeri's method using normal bases over the composite field is known to be most efficient algorithm among these masking method. We rearrange the masking inversion operation over the composite field and so can find duplicated multiplications. Because of these duplicated multiplications, our method can reduce about 10.5% gates in comparison with Zakeri's method.

HS-Sign: A Security Enhanced UOV Signature Scheme Based on Hyper-Sphere

  • Chen, Jiahui;Tang, Shaohua;Zhang, Xinglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3166-3187
    • /
    • 2017
  • For "generic" multivariate public key cryptography (MPKC) systems, experts believe that the Unbalanced Oil-Vinegar (UOV) scheme is a feasible signature scheme with good efficiency and acceptable security. In this paper, we address two problems that are to find inversion solution of quadratic multivariate equations and find another structure with some random Oil-Oil terms for UOV, then propose a novel signature scheme based on hyper-sphere (HS-Sign for short) which directly answers these two problems. HS-Sign is characterized by its adding Oil-Oil terms and more advantages compared to UOV. On the one side, HS-Sign is based on a new inversion algorithm from hyper-sphere over finite field, and is shown to be a more secure UOV-like scheme. More precisely, according to the security analysis, HS-Sign achieves higher security level, so that it has larger security parameters choice ranges. On the other side, HS-Sign is beneficial from both the key side and computing complexity under the same security level compared to many baseline schemes. To further support our view, we have implemented 5 different attack experiments for the security analysis and we make comparison of our new scheme and the baseline schemes with simulation programs so as to show the efficiencies. The results show that HS-Sign has exponential attack complexity and HS-Sign is competitive with other signature schemes in terms of the length of the message, length of the signature, size of the public key, size of the secret key, signing time and verification time.

Development of Flight Control Laws for the T-50 Advanced Supersonic Jet Trainer

  • Kim, Chong-Sup;Hur, Gi-Bong;Hwang, Byung-Moon;Cho, In-Je;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.32-45
    • /
    • 2007
  • The T-50 advanced supersonic jet trainer employs the Relaxed Static Stability (RSS) concept to improve the aerodynamic performance while the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 flight control laws employ a proportional-plus-integral type controller based on a dynamic inversion method in longitudinal axis and a proportional type controller based on a blended roll system with simple roll rate feedback and beta-betadot feedback system. These control laws are verified by flight tests with various maneuver set flight envelopes and the control laws are updated to resolve flight test issues. This paper describes several concepts of flight control laws used in T-50 to resolve those flight test issues. Control laws for solving the roll-off problem during pitch maneuver in asymmetric loading configurations, improving the departure resistance in negative angle of attack conditions and enhancing the fine tracking performance in air-to-air tracking maneuvers are described with flight test data.

TrapMI: Protecting Training Data to Evade Model Inversion Attack on Split Learning (TrapMI: 분할 학습에서 모델 전도 공격을 회피할 수 있는 훈련 데이터 보호 방법)

  • Hyun-Sik Na;Dae-Seon Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.234-236
    • /
    • 2023
  • Edge AI 환경에서의 DNNs 학습 방법 중 하나인 분할 학습은 모델 전도 공격으로 인해 입력 데이터의 프라이버시가 노출될 수 있다. 본 논문에서는 분할 학습 환경에서의 모델 전도 공격에 대한 기존 방어 기술들의 한계점을 회피할 수 있는 TrapMI 기술을 제안하고, 이를 통해 입력 이미지를 원 본 데이터 세트의 도메인에서 특정 타겟 이미지 도메인으로 이동시킴으로써 이미지 복원의 가능성을 최소화시킨다. 추가적으로, 테스트 과정에서 타겟 이미지의 정보를 알 수 없는 제약을 회피하기 위해 AutoGenerator를 구축한 후 실험을 통해 원본 데이터 보호 성능을 검증한다.

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Hardware Implementation of Elliptic Curve Scalar Multiplier over GF(2n) with Simple Power Analysis Countermeasure (SPA 대응 기법을 적용한 이진체 위의 타원곡선 스칼라곱셈기의 하드웨어 구현)

  • 김현익;정석원;윤중철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.73-84
    • /
    • 2004
  • This paper suggests a new scalar multiplication algerian to resist SPA which threatens the security of cryptographic primitive on the hardware recently, and discusses how to apply this algerian Our algorithm is better than other SPA countermeasure algorithms aspect to computational efficiency. Since known SPA countermeasure algorithms have dependency of computation. these are difficult to construct parallel architecture efficiently. To solve this problem our algorithm removes dependency and computes a multiplication and a squaring during inversion with parallel architecture in order to minimize loss of performance. We implement hardware logic with VHDL(VHSIC Hardware Description Language) to verify performance. Synthesis tool is Synplify Pro 7.0 and target chip is Xillinx VirtexE XCV2000EFGl156. Total equivalent gate is 60,508 and maximum frequency is 30Mhz. Our scalar multiplier can be applied to digital signature, encryption and decryption, key exchange, etc. It is applied to a embedded-micom it protects SPA and provides efficient computation.