• Title/Summary/Keyword: Inversion

Search Result 2,298, Processing Time 0.026 seconds

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.

Retrieval of Aerosol Microphysical Parameter by Inversion Algorithm using Multi-wavelength Raman Lidar Data (역행렬 알고리즘을 이용한 다파장 라만 라이다 데이터의 고도별 에어로졸 Microphysical Parameter 도출)

  • Noh, Young-Min;Kim, Young-Joon;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.97-109
    • /
    • 2007
  • Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N,\;126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N,\;126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around $0.31{\sim}0.33{\mu}m$, single scattering albedo between $0.964{\sim}0.977$ at 532 nm in PBL and effective radii of $0.27{\mu}m$ and single scattering albedo between $0.923{\sim}0.924$ above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between $0.23{\sim}0.24{\mu}m$, single scattering albedo around $0.924{\sim}0.929$ at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

Strategy for Improving the Resolution of Electrical-resistivity Inversions for Detecting Soft Ground at Shallow Depths (~ 10 m) (천부(약 10 m) 연약 지반 탐지를 위한 전기비저항 역산 해상도 향상 전략)

  • Jang, Hangilro;Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.367-377
    • /
    • 2018
  • This study introduces a DC resistivity inversion method that incorporates structural and inequality constraints to enhance the resolution of resistivity inversions, and presents sample inversion results with these constraints. In the constrained inversions, a base model is constructed from a layered model through interpretation of other geophysical data. Inversion tests establish that both the structural and inequality constraints produce better resistivity models than the unconstrained inversion. However, the inequality inversion not only reproduces the exact layered structure of the background, it reproduces conductive anomalies at a depth of ~ 10 m when an inexact base model of electrical resistivity is used.

3D gravity inversion with Euler deconvolution as a priori information (오일러 디컨벌루션을 사전정보로 이용한 3 차원 중력 역산)

  • Rim, Hyoung-Rae;Park, Yeong-Sue;Lim, Mu-Taek;Koo, Sung-Bon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • It is difficult to obtain high-resolution images by 3D gravity inversion, because the problem is extremely underdetermined - there are too many model parameters. In order to reduce the number of model parameters we propose a 3D gravity inversion scheme utilising Euler deconvolution as a priori information. The essential point of this scheme is the reduction of the nonuniqueness of solutions by restricting the inversion space with the help of Euler deconvolution. We carry out a systematic exploration of the growing body process, but only in the restricted space within a certain radius of the Euler solutions. We have tested our method with synthetic gravity data, and also applied it to a real dataset, to delineate underground cavities in a limestone area. We found that we obtained a more reasonable subsurface density image by means of this combination between the Euler solution and the inversion process.

Application of 3D magnetotelluric investigation for geothermal exploration - Examples in Japan and Korea

  • Uchida Toshihiro;Song Yoonho;Mitsuhata Yuji;Lee Seong Kon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.390-397
    • /
    • 2003
  • A three-dimensional (3D) inversion technique has been developed for interpretation of magnetotelluric (MT) data. The inversion method is based on the linearized least-squares (Gauss-Newton) method with smoothness regularization. In addition to the underground 3D resistivity distribution, static shifts are also treated as unknown parameters in the inversion. The forward modeling is by the staggered-grid finite difference method. A Bayesian criterion ABle is applied to search the optimum trade-off among the minimization of the data misfit, model roughness and static shifts. The method has been applied to several MT datasets obtained at geothermal fields in Japan and other Asian countries. In this paper, two examples will be discussed: one is the data at the Ogiri geothermal area, southwestern Japan, and the other is at the Pohang low-enthalpy geothermal field, southeastern Korea. The inversion of the Ogiri data has been performed stably, resulting in a good fitting between the observed and computed apparent resistivities and phases. The recovered 3D resistivity structure is generally similar to the two-dimensional (2D) inversion models, although the deeper portion of the 3D model seems to be more realistic than that of the 2D model. The 3D model is also in a good agreement with the geological model of the geothermal reservoirs. 3D interpretation of the Pohang MT data is still preliminary. Although the fitting to the observed data is very good, the preliminary 3D model is not reliable enough because the station coverage is not sufficient for a 3D inversion.

  • PDF

Design and Implementation of a Protocol for Solving Priority Inversion Problems in Real-time OS (실시간 운영체제의 우선순위 역전현상 해결을 위한 프로토콜 설계 및 구현)

  • Kang, Seong-Goo;Gyeong, Gye-Hyeon;Ko, Kwang-Sun;Eom, Young-Ik
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.405-412
    • /
    • 2006
  • Real-time operating systems have been used in various computing environments, where a job must be completed in its deadline, with various conditions, such as effective scheduling policies, the minimum of an interrupt delay, and the solutions of priority inversion problems, that should be perfectly satisfied to design and develop optimal real-time operating systems. Up to now, in order to solve priority inversion problems among several those conditions. There have been two representative protocols: basic priority inheritance protocol and priority ceiling emulation protocol. However, these protocols cannot solve complicated priority inversion problems. In this paper, we design a protocol, called recursive priority inheritance (RPI), protocol that effectively solves the complicated priority inversion problems. Our proposed protocol is also implemented in the Linux kernel and is compared with other existing protocols in the aspect of qualitative analysis.

RETRIEVAL OF AEROSOL MICROPHYSICAL PARAMETER BY INVERSION ALGORITHM USING MULTI-WAVELENGTH RAMAN LIDAR DATA

  • Noh, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.298-301
    • /
    • 2007
  • Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N$, $126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N$, $126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around 0.32 ${\mu}m$, single scattering albedo between 0.97 at 532 nm in PBL and effective radii of 0.27 ${\mu}m$ and single scattering albedo of 0.92 above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between 0.24 ${\mu}m$, single scattering albedo around 0.91 at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

  • PDF

Fabrication of PPLN by Real-Time Control of a Transferred Charge and Analysis of Domain Inversion Process (주입 전하량의 실시간 제어에 의한 PPLN 제작 및 분극반전 과정 분석)

  • Kwon, Jai-Young;Kim, Hyun-Deok;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • We proposed a PPLN fabrication setup that measures the voltage and current applied to $LiNbO_3$ in real time during application of a DC electric field. Because the duration for transferring a sufficient electron charge to $LiNbO_3$ increases, we are able to control the electron charge flow transferred to $LiNbO_3$ efficiently. We divided the domain inversion process of PPLN into 5 states: Nucleation (state 1), Spread of the domain inversion region under the electrode(state 2), Accumulation of the electron charge at the insulator/$LiNbO_3$ interface(state 3), Domain inversion under the insulator layer after breakdown(state 4), and Lowering the electric field applied to $LiNbO_3$ (state 5). We have found that the Threshold Point is essential for the domain inversion and that the domain inversion process must be stopped within state 3 for the optimum PPLN. Using these results, we could fabricate a stable and reproducible PPLN efficiently.

Conjugate Gradient Least-Squares Algorithm for Three-Dimensional Magnetotelluric Inversion (3차원 MT 역산에서 CG 법의 효율적 적용)

  • Kim, Hee-Joon;Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • The conjugate gradient (CG) method is one of the most efficient algorithms for solving a linear system of equations. In addition to being used as a linear equation solver, it can be applied to a least-squares problem. When the CG method is applied to large-scale three-dimensional inversion of magnetotelluric data, two approaches have been pursued; one is the linear CG inversion in which each step of the Gauss-Newton iteration is incompletely solved using a truncated CG technique, and the other is referred to as the nonlinear CG inversion in which CG is directly applied to the minimization of objective functional for a nonlinear inverse problem. In each procedure we only need to compute the effect of the sensitivity matrix or its transpose multiplying an arbitrary vector, significantly reducing the computational requirements needed to do large-scale inversion.

Joint Inversion of DC Resistivity and Travel Time Tomography Data: Preliminary Results (전기비저항 주시 토모그래피 탐사자료 복합역산 기초 연구)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • Recently, multi-dimensional joint inversion of geophysical data based on fundamentally different physical properties is being actively studied. Joint inversion can provide a way to obtaining much more accurate image of the subsurface structure. Through the joint inversion, furthermore, it is possible to directly estimate non-geophysical material properties from geophysical measurements. In this study, we developed a new algorithm for jointly inverting dc resistivity and seismic traveltime data based on the multiple constraints: (1) structural similarity based on cross-gradient, (2) correlation between two different material properties, and (3) a priori information on the material property distribution. Through the numerical experiments of surface dc resistivity and seismic refraction surveys, the performance of the proposed algorithm was demonstrated and the effects of different regularizations were analyzed. In particular, we showed that the hidden layer problem in the seismic refraction method due to an inter-bedded low velocity layer can be solved by the joint inversion when appropriate constraints are applied.