• Title/Summary/Keyword: Inverse-kinematics

Search Result 358, Processing Time 0.036 seconds

Design, Implementation, and Control of Two Arms of a Service Robot for Floor Tasks (바닥작업이 가능한 양팔 서비스 로봇의 기구학 설계, 제작 및 제어)

  • Bae, Yeong Geol;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • This paper presents the implementation and control of two arms of an indoor service robot for floor tasks. The robot arms are designed to have 6 degrees-of-freedom (DOF), but actually built to have 5 DOF. Forward and inverse kinematics of two arms are analyzed and simulated to confirm the kinematic analysis. Two arms are actually controlled based on the inverse kinematics. The right and left arms are separately controlled to follow different trajectories in order to make sure the functionality of both arms. Experimental studies are conducted to confirm the kinematic analysis and proper operation of two arms.

Application of LabView-Based Parameter Scheduling Programming for a 6-Axis Articulated Robot (LabView기반 6축 수직 다관절 로봇의 파라미터 스케쥴링 프로그래밍에 관한 연구)

  • Kim, Seong-Bhn;Chung, Won-Jee;Kim, Hyo-Gon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.327-333
    • /
    • 2015
  • As industrial robots come into wider use, their control techniques are being developed along with enhancements in their performance. Specially, the dynamic performance of a 6-axis articulated industrial robot is greatly changed according to the position and orientation of the robot. This means that the PI parameter tuning of the robot and orientation of the robot. This mconsidering the dynamic characteristics of robot mechanism. In this study, $LabView^{(R)}$ programming was applied to automatically conduct parameter scheduling for various robot motions. Using forward and inverse kinematics of RS2, we can divide the working envelope of RS2 into 24 subspaces. We then conduct the gain-tuning according to each subspace. Finally, we program the actual gain scheduling, in which the optimized gain-tuning for each subspace to be passed should be changed for various robot motions using $LabView^{(R)}$.

Design and Control of X-ray Permeable Teleoperated Stewart Platform for Fracture Surgery (골절 수술용 엑스레이 투과 원격조종 스튜어트 플랫폼의 설계 및 제어)

  • Yoo, Byeongjun;Kim, Hyemi;Lee, Sung-Hak;Lim, Sunho;Park, Tae Gon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.660-666
    • /
    • 2015
  • To avoid radiation exposure from repeated x-rays taken during orthopedic surgery, an x-ray permeable teleoperated Stewart platform for orthopedic fracture surgery was developed. This system is composed of a user interface device and a teleoperated operational robot, both of which use a Stewart platform mechanism. The links of the operational robot are made from an x-ray permeable material, polycarbonate, to minimize the interference. The forward and inverse kinematics algorithm applied and the structural reliability were both verified through an analysis using commercial engineering software. To monitor the operating status in real time and stop the device during an emergency, a monitoring software was developed. The performance of the x-ray permeable teleoperated Steward platform was validated experimentally.

Surgical Planning in Deformity Correction Osteotomies using Forward Kinematics and Inverse Kinematics (정기구학 및 역기구학을이용한하지 교정절골술 계획 생성)

  • Jeong, Jiwon;Lee, Seung Yeol;Youn, Kibeom;Park, Moon Seok;Lee, Jehee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Patients with cerebral palsy or arthritis have deformities in lower limb which cause unstable gait or posture and pains. Surgeons perform a deformity correction osteotomy with surgical plan. But sometimes they find the unexpected angular or rotational deformation after surgery. The problems are that there is no method to predict the result of a surgical plan and also there are so many factors to must consider in surgical planning step such as clinical measurements, rotation angle, wedge angle, morphology of lower limb, etc. This paper presents new methods for planning the deformity correction osteotomy efficiently. There are two approaches based on the 3D mesh model and the accurate assessment of the patient's lower limb. One is the manual pre-simulation of surgery using forward kinematics. And the other is the automatic surgical planning using inverse kinematics and nonlinear optimization. Using these methods, we can predict and verify the results of various surgical treatments and also we can find a more effective surgical plan easily compared to conventional methods.

Analysis of human gait using inverse kinematics (역기구학을 이용한 보행 분석)

  • 최경암;정민근;염영일
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.3-14
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis is based on a gait model consisting of a torso and two legs. Each let has three segments: thigh, shank, foot, and has six degrees-of-freedom. In order to synthesize trajectories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. Hpwever, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified.

  • PDF

Intelligent Motion Planner for Redundant Manipulators Controlled by Neuro-Biological Signals

  • Kim, Chang-Hyun;Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.845-848
    • /
    • 2003
  • There are many researches on using human neuro-biological signals for various problems such as controlling a mechanical object and/or interfacing human with the computer. It is one of very interesting topics that human can use various instruments without learning specific knowledge if the instruments can be controlled as human intends. In this paper, we proposed an intelligent motion planner for a redundant manipulator, which is controlled by humans neuro-biological signals, especially, EOG (Electrooculogram). We found the optimal motion planner for the redundant manipulator that can move to the desired point. We used neural networks to find the inverse kinematics solution of the manipulator. We also showed the performance of the proposed motion planner with several simulations.

  • PDF

An inequality constraints based method for inverse kinematics of redundant manipulators

  • sung, Young-Whee;Cho, Dong-Kwon;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.486-490
    • /
    • 1993
  • In addtion to a basic motion task, redundant manipulators can achieve some additional tasks by optimizing proper performance criteria. Some of performance criteria can be transformed to inequality constraints. So the redundancy resolving problem can be reformulated as a local optimization problem with equality constraints for the end effector and inequality constraints for some performance criteria. In this article, we propose a method for solving the inverse kinematics of a manipulator with redundancy using the Kuhn-Tucker theorem to incorporate inequality constraints. With proper choice of inequality constraints, the proposed method gives a way of optimizing multiple criteria in redundant manipulators.

  • PDF

Robot Arm Control using Optimized Pinch Grasp Posture Based on Object Shape (물체형상 기반 로봇 팔 제어)

  • Orlando, M. Felix;Oh, Yong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1929-1930
    • /
    • 2006
  • Human like robot arm posture for grasping by considering the shape of the target object is quite a challenge in the field of robotics. In this paper, an optimized grasp posture with respect to the shape of the object considering the wrist joint angle and elbow elevation angle, in order to verify that the grasp posture is human like has been proposed. Given a target object, the candidates for grasp are computed by the method described in this paper. For each candidate, the closed loop inverse kinematics has been solved for the corresponding hand position and orientation. From the obtained joint angles through inverse kinematics, the elbow elevation angle has been computed and compared with the elbow elevation angle obtained through human movement data by the characteristic equation. After considering all the candidates, the hand position and orientation with minimum wrist joint and difference in elbow elevation angles has been utilized as the optimized grasp posture. Simulation results are presented.

  • PDF

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF

A Prototype of Robotic External Fixation System for Surgery of Bone Deformity Correction

  • Kim, Yoon-Hyuk;Joo, Sang-Min;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2448-2450
    • /
    • 2005
  • A robotic external fixation system for the surgery of bone deformity correction was developed to simulate the execution process of mal-unioned femur by the adjustment of the joints of the fixation system. An inverse kinematics analysis algorithm was developed to calculate the necessary rotations and translations at each joint of the robotic system. The computer graphic model was developed for validation of the analysis result and visualization of the surgical process. For given rotational and angular deformity case, the surgical execution process using the robotic system was well matched with the pre-operative planning. The final residual rotational deformities were within $1.0^{\circ}{\sim}1.6^{\circ}$ after surgical correction process. The presented robotic system with computer-aided planning can be useful for knowledge-based fracture treatment and bone deformity correction under external fixation.

  • PDF