• Title/Summary/Keyword: Inverse problems

Search Result 357, Processing Time 0.024 seconds

A new conjugate gradient method for dynamic load identification of airfoil structure with randomness

  • Lin J. Wang;Jia H. Li;You X. Xie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.301-309
    • /
    • 2023
  • In this paper, a new modified conjugate gradient (MCG) method is presented which is based on a new gradient regularizer, and this method is used to identify the dynamic load on airfoil structure without and with considering random structure parameters. First of all, the newly proposed algorithm is proved to be efficient and convergent through the rigorous mathematics theory and the numerical results of determinate dynamic load identification. Secondly, using the perturbation method, we transform uncertain inverse problem about force reconstruction into determinate load identification problem. Lastly, the statistical characteristics of identified load are evaluated by statistical methods. Especially, this newly proposed approach has successfully solved determinate and uncertain inverse problems about dynamic load identification. Numerical simulations validate that the newly developed method in this paper is feasible and stable in solving load identification problems without and with considering random structure parameters. Additionally, it also shows that most of the observation error of the proposed algorithm in solving dynamic load identification of deterministic and random structure is respectively within 11.13%, 20%.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms (두 개의 스튜어트 플랫폼을 이용한 병렬형 신 압연기의 조작성 해석)

  • 이준호;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.925-936
    • /
    • 2003
  • The manipulability analysis of the parallel-type rolling mill proposed in Hong et al. [1] is re-visited. The parallel rolling mill uses two Stewart platforms in opposite direction for the generation of 6 degree-of-freedom motions of each roll. The objective of this new parallel rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of rolls, and tension of the strip. New forward/inverse kinematics problems, in contrast with [1], are formulated. The forward kinematics problem is defined as the problem of finding the roll-gap and the pair-crossing angle of two work rolls for given lengths of twelve legs. On the other hand, the inverse kinematics problem is defined as the problem of finding the lengths of twelve legs when the roll-gap, the pair-crossing angle, and the position and orientation of one work roll are given. The method of manipulability analysis used in this paper follows the spirit of [1]. But, because the rolling force and moment exerted from both upper and lower rolls have been included in the manipulability analysis, more accurate results than the use of a single platform can be achieved. Two. kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

A Proposal for Inverse Demand Curve Production of Cournot Model for Application to the Electricity Market

  • Kang Dong-Joo;Oh Tae-Kyoo;Chung Koohyung;Kim Balho H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.403-411
    • /
    • 2005
  • At present, the Cournot model is one of the most commonly used theories to analyze the gaming situation in an oligopoly type market. However, several problems exist in the successful application of this model to the electricity market. The representative one is obtaining the inverse demand curve able to be induced from the relationship between market price and demand response. In the Cournot model, each player offers their generation quantity to obtain maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect the real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears over the long-term through statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as the trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

The Intermolecular Potential of Ar-Ar by Regularized Inverse Method (규칙화 역과정 방법을 이용한 Ar-Ar의 분자간 위치에너지 결정)

  • Kim, Hwa Joong;Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 1996
  • A stable and accurate inverse method for extracting potential from spectroscopic data studied. The method is based on the Tikhonov regularization method to overcome the possible instability of nonlinear inverse problems using a priori smooth properties of the potential energy surface. The merit of this method is to treat the potential as continuous functions of the intermolecular coordinates instead of the conventional parameter fitting of restricted potential forms. Numerical study for the Ar-Ar show that from spectroscopic data the exact potential has been recovered whole region and the discrepancies by the dispersion force observed at the large distance between the exact and Morse potential or from RKR method can be eliminated by this method.

  • PDF

Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment (병렬 환경하의 진화 이론을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1806-1813
    • /
    • 2002
  • It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select a trial solution initially for optimization because the defined objective function is heavily multimodal. A method is presented in this paper, which uses continuous evolutionary algorithms(CEAs). CEAs are effective for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising with high parallel efficiency over about 94%.

Improvement of surgical haptic master device using cable-conduit and backlash compensation by smooth backlash inverse (케이블 컨듀잇 구조의 수술용 햅틱 마스터 장치의 개선과 smooth backlash inverse를 이용한 backlash 보정)

  • Choi, Woo Hyeok;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.48-56
    • /
    • 2014
  • In robotic surgery, a surgeon checks only a surgical site of patient in the progress of surgery by vision and sound information. In order to solve this limited information, the haptic function is necessary. And haptic surgical robot is also necessary to design a haptic master device. The master device for laparoscope operation with cable-conduit was developed in previous research to give haptic function. It suggested a possibility of developing a master device by using the cable-conduit. However, it is very inconvenient to use. Therefore, this paper suggests a new mechanism design structure to solve the problems of the previous work by new forming a new master device. And it has proved that it's usability is better than previous one. Furthermore it has also experimented and analyzed that a backlash of new master device is compensated by smooth backlash inverse algorithm.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.