• Title/Summary/Keyword: Inverse dynamic analysis

Search Result 180, Processing Time 0.026 seconds

Experimental Evaluation of Feedforward Control Based on the Dynamic Models of A Direct Drive SCARA Robot (직접구동 평면 다관절 로봇의 동역학적 모델에 따른 피드포워드 제어의 실험적 평가)

  • Hong, Yun-Sik;Kang, Bong-Su;Kim, Su-Hyeon;Park, Gi-Hwan;Kwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.146-153
    • /
    • 1996
  • A SCARA type direct drive robot which can be used in the assembly operation was designed and manufactured. Graphite fiber epoxy composite material was used in the fabrication of the robot arm structure in order to improve the speed of the robot arm with a high damping effect. For model-based control and sensitivity analysis of system parameters, the dynamic model of robot arm and drive servo amplifier parameters such as equivalent gains of PWM driver and velocity gains of servo system were estimated from frequency response tests. The complete dynamic model for overall robot system was used in the simulation of the open-loop control. The simulation results agreed reasonably well to the experimental results. The feedforward control using the dynamic models improved the trajectory tracking performance, decreasing the tracking error by factor of three compared with PID control. This study found that the inverse dynamic model of the robot arm including the drive servo system showed better performances than the case of arm dynamic model only.

Structural identification of a steel frame from dynamic test-data

  • Morassi, A.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.237-258
    • /
    • 2001
  • Structural identification via modal analysis in structural mechanics is gaining popularity in recent years, despite conceptual difficulties connected with its use. This paper is devoted to illustrate both the capabilities and the indeterminacy characterizing structural identification problems even in quite simple instances, as well as the cautions that should be accordingly adopted. In particular, we discuss an application of an identification technique of variational type, based on the measurement of eigenfrequencies and mode shapes, to a steel frame with friction joints under various assembling conditions. Experience has suggested, so as to restrict the indeterminacy frequently affecting identification issues, having resort to all the a priori acknowledged information on the system, to the symmetry and presence of structural elements with equal stiffness, to mention one example, and mindfully selecting the parameters to be identified. In addition, considering that the identification techniques have a local character and correspond to the updating of a preliminary model of the structure, it is important that the analytical model on the first attempt should be adequately accurate. Secondly, it has proved determinant to cross the results of the dynamic identification with tests of other typology, for instance, static tests, so as to fully understand the structural behavior and avoid the indeterminacy due to the nonuniqueness of the inverse problem.

Effective Heterogeneous Data Fusion procedure via Kalman filtering

  • Ravizza, Gabriele;Ferrari, Rosalba;Rizzi, Egidio;Chatzi, Eleni N.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.631-641
    • /
    • 2018
  • This paper outlines a computational procedure for the effective merging of diverse sensor measurements, displacement and acceleration signals in particular, in order to successfully monitor and simulate the current health condition of civil structures under dynamic loadings. In particular, it investigates a Kalman Filter implementation for the Heterogeneous Data Fusion of displacement and acceleration response signals of a structural system toward dynamic identification purposes. The procedure is perspectively aimed at enhancing extensive remote displacement measurements (commonly affected by high noise), by possibly integrating them with a few standard acceleration measurements (considered instead as noise-free or corrupted by slight noise only). Within the data fusion analysis, a Kalman Filter algorithm is implemented and its effectiveness in improving noise-corrupted displacement measurements is investigated. The performance of the filter is assessed based on the RMS error between the original (noise-free, numerically-determined) displacement signal and the Kalman Filter displacement estimate, and on the structural modal parameters (natural frequencies) that can be extracted from displacement signals, refined through the combined use of displacement and acceleration recordings, through inverse analysis algorithms for output-only modal dynamics identification, based on displacements.

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.

The Vehicle Accident Reconstruction using Skid and Yaw Marks (스키드마크 및 요마크를 이용한 차량사고재구성)

  • 이승종;하정섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

Analysis of the two dimensional sheet debris flight equations: initial and final state

  • Scarabino, A.;Giacopinelli, P.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.109-125
    • /
    • 2010
  • This work presents some analytical and numerical results of a dynamic analysis of the dimensionless 2-D sheet flight equations. Two empirical models for aerodynamic forces and moments are used and compared. Results show that the initial condition of rest is always unstable, and for long times three distinct flight regimes are possible, depending on the initial angle of attack, the Tachikawa number, Ta (in fact, the parameter chosen was its inverse, ${\Omega}$), and a mass ratio ${\Phi}$. The final orbits in the velocity space and their maximum kinetic energy are compared with a theoretical asymptotic state of the motion equations, and some design considerations are proposed.

A study on the analysis and design for VTR deck mechanisms using CAE (CAE를 이용한 VTR Deck기구의 해석 및 설계)

  • 박태원;범진환;한형석;김명규;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.223-235
    • /
    • 1993
  • VTR(Video Tape Recorder) has very complicated mechanisms composed of various cams, links, gears and so on. To satisfy kinematic requirements of VTR components, various geometric constraints between rigid bodies and a translational cam design program are developed. Mechanisms of VTR are divided into functional groups like a control part, a loading part and a tape guide part. Each group is modeled for kinematic and dynamic analysis. Finally, all groups are combined together for a complete VTR model and loads required for each function of VTR controls are studied. Detailed description of developed programs are presented and result are discussed.

Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector (작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향)

  • Cho, Insu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness (층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구)

  • Yoo, Seok-Hyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.