Browse > Article
http://dx.doi.org/10.12989/was.2010.13.2.109

Analysis of the two dimensional sheet debris flight equations: initial and final state  

Scarabino, A. (Departamento Aeronautica, Universidad Nacional de La Plata)
Giacopinelli, P. (Departamento Aeronautica, Universidad Nacional de La Plata)
Publication Information
Wind and Structures / v.13, no.2, 2010 , pp. 109-125 More about this Journal
Abstract
This work presents some analytical and numerical results of a dynamic analysis of the dimensionless 2-D sheet flight equations. Two empirical models for aerodynamic forces and moments are used and compared. Results show that the initial condition of rest is always unstable, and for long times three distinct flight regimes are possible, depending on the initial angle of attack, the Tachikawa number, Ta (in fact, the parameter chosen was its inverse, ${\Omega}$), and a mass ratio ${\Phi}$. The final orbits in the velocity space and their maximum kinetic energy are compared with a theoretical asymptotic state of the motion equations, and some design considerations are proposed.
Keywords
sheet debris; stability; aerodynamic forces;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Baker, C.J. (2007), "The debris flight equations", J. Wind. Eng. Ind. Aerod., 95(5), 329-353.   DOI   ScienceOn
2 Carr, L.W. (1988), "Progress in analysis and prediction of dynamic stall", J. Aircraft, 25(1), 6-17.   DOI   ScienceOn
3 Elsgoltz, L. (1977), Teoria de la Estabilidad, Ecuaciones Diferenciales y Calculo Variacional, 2nd ed., MIR, Moscow, pp. 207-219.
4 Flachsbart, O. (1932), "Messungen an ebenen und gewolbten Platten", Ergebnisse der Aerodynamischen Versuchanstalt zu Goettingen, IV.
5 Fremaux, C.M., Vairo, D.M. and Whippe, R.D. (1995), "Effect of geometry and mass distribution on tumbling characteristics of flying wings", J. Aircraft, 32(2), 404-410.   DOI   ScienceOn
6 Gallaway, C.R. and Hankey, W.L. (1985), "Free-falling autorotating plate - A coupled fluid and flight mechanics problem", J. Aircraft, 22(11), 983-987.   DOI   ScienceOn
7 Grassberger, P. and Procaccia, I. (1983), "Measuring the Strangeness of Strange Attractors", Physica D., 9(1-2), 189-208.   DOI   ScienceOn
8 Hoerner, S.F. (1965), Fluid-dynamic drag, Hoerner Fluid Dynamics.
9 Holmes, J.D. (2004), "Trajectories of spheres in strong winds with applications to windborne debris", J. Wind. Eng. Ind. Aerod., 92, 9-22.   DOI   ScienceOn
10 Holmes, J.D., Letchford, C.W. and Lin, N. (2006), "Investigations of plate-type windborne debris _ Part II: Computed trajectories", J. Wind. Eng. Ind. Aerod., 94, 21-39.   DOI   ScienceOn
11 Holmes, J.D., Baker, C. and Tamura, Y. (2006), "Tachikawa number: A proposal", J. Wind. Eng. Ind. Aerod., 94, 41-47.   DOI   ScienceOn
12 Iversen, J.D. (1979), "Autorotating flat-plate wings: the effect of the moment of inertia, geometry and Reynolds number", J. Fluid Mech., 92, 327-48.   DOI   ScienceOn
13 Lin, N., Letchford, C. and Holmes, J.D. (2006), "Investigations on plat-type windborne debris, Part I, Experiments in full scale and wind tunnel", J. Wind. Eng. Ind. Aerod., 94(2), 51-76.   DOI   ScienceOn
14 Lugt, H. (1983), "Autorotation", Annu. Rev. Fluid Mech., 15, 123-47.   DOI   ScienceOn
15 Mittal, R., Seshadri, V. and Udaykumar, H.S. (2004), "Flutter, Tumble and Vortex Induced Autorotation", Theor. Comp. Fluid Dyn., Jan 2004: Published Online (DOI) 10.1007/s00162-003-0101-5
16 Tachikawa, M. (1983), "Trajectories of flat plates in uniform flow with applications to wind-generated missiles", J. Wind. Eng. Ind. Aerod., 14, 443-453.   DOI   ScienceOn
17 Tachikawa, M. (1988), "A method for estimating the distribution range of trajectories of windborne missiles", J. Wind. Eng. Ind. Aerod., 28, 175-184.
18 Wang, K. and Letchford, C. (2003), "Flying debris behaviour", 11th Int. Conf. on Wind Engineering, Lubbock, TX, USA June 2-5 2003.
19 Wills, J.A.B., Lee, B.E. and Wyatt, T.A. (2002), "A model for wind-borne debris damage", J. Wind. Eng. Ind. Aerod., 90, 555-565.   DOI   ScienceOn