• Title/Summary/Keyword: Inverse Transform Methods

Search Result 61, Processing Time 0.028 seconds

A FURTHER INVESTIGATION OF GENERATING FUNCTIONS RELATED TO PAIRS OF INVERSE FUNCTIONS WITH APPLICATIONS TO GENERALIZED DEGENERATE BERNOULLI POLYNOMIALS

  • Gaboury, Sebastien;Tremblay, Richard
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.831-845
    • /
    • 2014
  • In this paper, we obtain new generating functions involving families of pairs of inverse functions by using a generalization of the Srivastava's theorem [H. M. Srivastava, Some generalizations of Carlitz's theorem, Pacific J. Math. 85 (1979), 471-477] obtained by Tremblay and Fug$\grave{e}$ere [Generating functions related to pairs of inverse functions, Transform methods and special functions, Varna '96, Bulgarian Acad. Sci., Sofia (1998), 484-495]. Special cases are given. These can be seen as generalizations of the generalized Bernoulli polynomials and the generalized degenerate Bernoulli polynomials.

Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling (전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the two-dimensional (2D) modeling of electrical method, the potential in the space domain is reconstructed with the calculated potentials in the wavenumber domain using inverse Fourier transform. The inverse Fourier integral is numerically evaluated using the transformed potential at different wavenumbers. In order to improve the precision of the integration, either the logarithmic or exponential approximation has been used depending on the size of wavenumber. Two numerical methods have been generally used to evaluate the integral; interval integration and Gaussian quadrature. However, both methods do not consider the distance from the current source. Thus the resulting potential in the space domain shows some error. Especially when the distance from the current source is very small or large, the error increases abruptly and the evaluated potential becomes extremely unstable. In this study, we developed a new method to calculate the integral accurately by introducing the distance from the current source to the rescaled Gauss abscissa and weight. The numerical tests for homogeneous half-space model show that the developed method can yield the error level lower than 0.4 percent over the various distances from the current source.

Study on Preventing Bit Error of Digital Watermark Using Orthogonal Transform

  • Watanabe, Jun;Hasegawa, Madoka;Kato, Shigeo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.277-280
    • /
    • 2002
  • Many digital watermarking methods have been proposed for copyright protection. Especially, methods to add a watermark in the frequency domain are often used. In those methods, only a few components of frequencies are changed according to watermark information, so that the pixel values of the image obtained by the inverse transform sometimes exceed the dynamic range and owing to the clipping process at this time watermark information is changed. This phenomenon even occurs without attacks like image processing. In this paper, we propose two methods to prevent loss of watermark information, applicable to such cases, it is said that one is the method called "inversion of increase and decrease" and another is "conservation of amounts of changes." We can extract the watermark information correctly under the condition of no attacks by using these proposed methods.

  • PDF

SIMD Instruction-based Fast HEVC RExt Decoder (SIMD 명령어 기반 HEVC RExt 복호화기 고속화)

  • Mok, Jung-Soo;Ahn, Yong-Jo;Ryu, Hochan;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.224-237
    • /
    • 2015
  • In this paper, we introduce the fast decoding method with the SIMD (Single Instruction Multiple Data) instructions for HEVC RExt (High Efficiency Video Coding Range Extensions). Several tools of HEVC RExt such as intra prediction, interpolation, inverse-quantization, inverse-transform, and clipping modules can be classified as the proper modules for applying the SIMD instructions. In consideration of bit-depth increasement of RExt, intra prediction, interpolation, inverse-quantization, inverse-transform, and clipping modules are accelerated by SSE (Streaming SIMD Extension) instructions. In addition, we propose effective implementations for interpolation filter, inverse-quantization, and clipping modules by utilizing a set of AVX2 (Advanced Vector eXtension 2) instructions that can use 256 bits register. The evaluation of the proposed methods were performed on the private HEVC RExt decoder developed based on HM 16.0. The experimental results show that the developed RExt decoder reduces 12% average decoding time, compared with the conventional sequential method.

A New Algorithm for An Efficient Implementation of the MDCT/IMDCT (MDCT/IMDCT의 효율적인 구현을 위한 새로운 알고리즘)

  • 조양기;이원표;인치호;김희석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2471-2474
    • /
    • 2003
  • The modified discrete cosine transform (MDCT) and its inverse transform (IMDCT) are employed in subband/transform coding schemes as the analysis/synthesis filter bank based on time domain aliasing cancellation (TDAC). And they are the most computational intensive operations in layer III of the MPEG audio coding standard. In this paper, we propose a new efficient algorithm for the MDCT/IMDCT computation. It is based on the MDCT/IMDCT computation algorithm using the discrete cosine transforms (DCTs), and it employs two discrete cosine transform of type II(DCT-II) to compute the MDCT/IMDCT. In addition to, it takes advantage of ability in calculating the MDCT/IMDCT computation, where the length of a data block is divisible by 4. The proposed algorithm in this paper requires less calculation complexity than the existing methods. Also, it can be implemented by the parallel structure,, and its structure is particularly suitable for VLSI realization.

  • PDF

A Versatile Medical Image Enhancement Algorithm Based on Wavelet Transform

  • Sharma, Renu;Jain, Madhu
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1170-1178
    • /
    • 2021
  • This paper proposed a versatile algorithm based on a dual-tree complex wavelet transform for intensifying the visual aspect of medical images. First, the decomposition of the input image into a high sub-band and low-sub-band image is done. Further, to improve the resolution of the resulting image, the high sub-band image is interpolated using Lanczos interpolation. Also, contrast enhancement is performed by singular value decomposition (SVD). Finally, the image reconstruction is achieved by using an inverse wavelet transform. Then, the Gaussian filter will improve the visual quality of the image. We have collected images from the hospital and the internet for quantitative and qualitative analysis. These images act as a reference image for comparing the effectiveness of the proposed algorithm with the existing state-of-the-art. We have divided the proposed algorithm into several stages: preprocessing, contrast enhancement, resolution enhancement, and visual quality enhancement. Both analyses show the proposed algorithm's effectiveness compared to existing methods.

Application of EDA Techniques for Estimating Rainfall Quantiles (확률강우량 산정을 위한 EDA 기법의 적용)

  • Park, Hyunkeun;Oh, Sejeong;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.319-328
    • /
    • 2009
  • This study quantified the data by applying the EDA techniques considering the data structure, and the results were then used for the frequency analysis. Although traditional methods based on the method of moments provide very sensitive statistics to the extreme values, the EDA techniques have an advantage of providing very stable statistics with their small variation. For the application of the EDA techniques to the frequency analysis, it is necessary to normalization transform and inverse-transform to conserve the skewness of the raw data. That is, it is necessary to transform the raw data to make the data follow the normal distribution, to estimate the statistics by applying the EDA techniques, and then finally to inverse-transform the statistics of transformed data. These statistics decided are then applied for the frequency analysis with a given probability density function. This study analyzed the annual maxima one hour rainfall data at Seoul and Pohang stations. As a result, it was found that more stable rainfall quantiles, which were also less sensitive to extreme values, could be estimated by applying the EDA techniques. This methodology may be effectively used for the frequency analysis of rainfall at stations with especially high annual variations of rainfall due to climate change, etc.

New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules (수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구)

  • Jang Gang-Won;Nam Sang Jun;Kim Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.

Frequency Domain Pre-Processing for Automatic Defect Inspection of TFT-LCD Panels (TFT-LCD 패널의 자동 결함 검출을 위한 주파수영역 전처리)

  • Nam, Hyun-Do;Nam, Seung-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1295-1297
    • /
    • 2008
  • Large-sized flat-panel displays are widely used for PC monitors and TV displays. In this paper, frequency domain pre-filter algorithms are presented for detection of defects in large-sized Thin Film Transistor-Liquid Crystal Display(TFT-LCD) panel surfaces. Frequency analysis with 1-D, 2-D FFT methods for extract the periodic patterns of lattice structures in TFT-LCD is performed. To remove this patterns, frequency domain band-stop filters were used for eliminating specific frequency components. In order to acquire only defected images, 2-D inverse FFT methods to inverse transform of frequency domain images were used.

A Perspective on the Electromagnetic Imaging of Aircrafts (비행체의 전자파 영상화 기술동향)

  • 윤용수;이재천
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.167-175
    • /
    • 1999
  • So far, the remote sensing technology has widely been used in a variety of application areas such as military, medical imaging, environment, geology and so forth. The microwave remote sensing uses the wavelengths ranging from around one centimeter up to a few tens of centimeters and is known to be very effective regardless of the weather conditions and the day/night time as compared with the reflective InfraRed (IR) remote sensing or the thermal IR remote sensing. There are three generic modes of synthetic aperture radar imaging systems depending on its application, that is, stripmap mode, spotlight mode, or inverse mode. In this article we focus on the issue of imaging of flying aircrafts for the inverse mode of a ground - based, fixed radar with moving objects. The imaging of flying aircrafts is considered to be an important step for the automatic target recognition systems, and therefore a great deal of efforts have recently been made on the subject. Here we review the three representative methods including the Fourier transform processing, the time - frequency processing, and the reconstruction from the projection. Some relative merits and drawbacks are also discussed.