• Title/Summary/Keyword: Inverse Power Model

Search Result 135, Processing Time 0.026 seconds

Maximum Likelihood Estimation of Lifetime Distribution under Stress Bounded Ramp Tests: The Case Where Stress Loaded from Use Condition (스트레스 한계가 있는 램프시험하에서 신뢰수명분포의 최우추정: 사용조건에서부터 스트레스를 가하는 경우)

  • 전영록
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • This paper considers maximum likelihood (ML) estimation of lifetime distribution under stress bounded ramp tests in which the stress is increased linearly from used condition stress to the stress u, pp.r bound. The following assumptions are used: exponential lifetime distribution under a constant stress, an inverse power law relationship between stress and mean of exponential lifetime distribution, and a cumulative exposure model for the effect of changing stress. Likelihood equations for the parameters involved in the model and asymptotic distribution of the estimators are obtained, and a numerical example is given.

  • PDF

Accelerated Life Tests under Uniform Stress Distribution (스트레스함수가 균등분포인 가속수명시험)

  • 원영철
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.71-83
    • /
    • 2000
  • This paper presents accelerated life tests for Type I censoring data under probabilistic stresses. Probabilistic stress, $S_j$, is the random variable for stress influenced by test environments, test equipments, sampling devices and use conditions. The hazard rate, ,$theta_j$, is the random variable of environments and the function of probabilistic stress. Also it is assumed that the general stress distribution is uniform, the life distribution for the given hazard rate, $\theta$, is exponential and inverse power law model holds. In this paper, we obtained maximum likelihood estimators of model parameters and the mean life in use stress condition.

  • PDF

Breakdown Characteristics and Lifetime Estimation of Rubber Insulating Gloves Using Statistical Models

  • Kim, Doo Hyun;Kang, Dong Kyu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • This paper is aimed at predicting the life of rubber insulating gloves under normal operating stresses from relatively rapid test performed at higher stresses. Specimens of rubber insulating gloves are subject to multiple stress conditions, i.e. combined electrical and thermal stresses. Two modes of electrical stress, step voltage stress and constant voltage stress are used in specimen aging. There are two types of test for electrical stress in this experiment: the one is Breakdown Voltage (BDV) test under step voltage stress and thermal stress and the other is lifetime test under constant voltage stress and temperature stress. The ac breakdown voltage defined as the break-down point of insulation that leakage current excesses a limit value, l0mA in this experiment, is determined. Because the very high variability of aging data requires the application of statistical model, Weibull distribution is used to represent the failure times as the straight line on Weibull probability paper. Weibull parameters are deter-mined by three statistical methods i.e. maximum likelihood method, graphical method and least squares method, which employ SAS package, Weibull probability paper and FORTRAN, respectively. Two chosen models for predicting the life under simultaneous electrical and thermal stresses are inverse power model and exponential model. And the constants of life equation for multistress aging are calculated using numerical method, such as Gauss Jordan method etc.. The completion of life equation enables to estimate the life at normal stress based on the data collected from accelerated aging test. Also the comparison of the calculated lifetimes between the inverse power model and the exponential model is carried out. And the lifetimes calculated by three statistical methods with lower voltage than test voltage are compared. The results obtained from the suggested experimental method are presented and discussed.

Design and Comparison of Digital Predistorters for High Power Amplifiers (비선형 고전력 증폭기의 디지털 전치 보상기 설계 및 비교)

  • Lim, Sun-Min;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.403-413
    • /
    • 2009
  • We compare three predistortion methods to prevent signal distortion and spectral re-growth due to the high PAPR (peak-to-average ratio) of OFDM signal and the non-linearity of high-power amplifiers. The three predistortion methods are pth order inverse, indirect learning architecture and look up table. The pth order inverse and indirect learning architecture methods requires less memory and has a fast convergence because these methods use a polynomial model that has a small number of coefficients. Nevertheless the convergence is fast due to the small number of coefficients and the simple computation that excludes manipulation of complex numbers by separate compensation for the magnitude and phase. The look up table method is easy to implement due to simple computation but has the disadvantage that large memory is required. Computer simulation result reveals that indirect learning architecture shows the best performance though the gain is less than 1 dB at $BER\;=\;10^{-4}$ for 64-QAM. The three predistorters are adaptive to the amplifier aging and environmental changes, and can be selected to the requirements for implementation.

The Study on image correction of geometric distortion in digital radiography image (방사선투과영상의 기하학적 왜곡 보정에 관한 연구)

  • Park, S.K.;Ahn, Y.S.;Gil, D.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.25-30
    • /
    • 2011
  • This study is made to provide with a method for correcting the geometric distortion of the digital radiography image by analytical approach based upon the inverse square law and Beer's law. This study is aimed to find out and improve a mathematic model of nonlinear type. Variations in the alignment of the X-ray source, the object, and imaging plate affect digital radiography images. A model which is expressed in parameter values; e.g, angle, position, absorption coefficient, length, width and pixel account of radiography source, is developed so as to match the sample image. For the best correction of the digital image that is the most similar to the model image, a correction technique based upon tangent is developed; then applied to the digital radiography images of steel tubes. As a result, the image correction is confirmed to be made successfully.

A Study on the Accelerated Life Test of Rubber Specimens by using Stress Relaxation (응력완화를 이용한 고무시편의 가속수명시험 연구)

  • Lee, Su-Yeong;You, Ji Hye;Lee, Yong-Sung;Kim, Hong Seok;Cheong, Seong-Kyun;Shin, Ki-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Rubber parts are widely used in many applications such as dampers, shock absorbers, and seals used in railway and automotive industries. Much research has thus far been conducted on property estimation and life prediction of rubber parts. To predict the service life of rubber parts at room temperature, most prior work adopts the well-known Arrhenius model that needs the accelerated life test in high-temperature conditions. However, they may not reflect the actual conditions of use that rubber parts are usually used under a specific strain condition during long period of time. In this context, we propose a method for the life prediction of rubber parts in actual conditions of use. The proposed method is based on the accelerated life test using stress relaxation during which three relatively high elongation percentages (100%, 200%, and 300%) are applied to the rubber specimens. Rubber specimens were prepared in accordance with KS M 6518 standard and three stress relaxation testers were fabricated for actual experiments. Finally, a inverse power model for life prediction was derived from experimental results. The predicted life was compared with the actual test life for validation.

Comparative analysis of multiple mathematical models for prediction of consistency and compressive strength of ultra-high performance concrete

  • Alireza Habibi;Meysam Mollazadeh;Aryan Bazrafkan;Naida Ademovic
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.539-555
    • /
    • 2023
  • Although some prediction models have successfully developed for ultra-high performance concrete (UHPC), they do not provide insights and explicit relations between all constituents and its consistency, and compressive strength. In the present study, based on the experimental results, several mathematical models have been evaluated to predict the consistency and the 28-day compressive strength of UHPC. The models used were Linear, Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine equations. The applicability and accuracy of these models were investigated using experimental data, which were collected from literature. The comparisons between the models and the experimental results confirm that the majority of models give acceptable prediction with a high accuracy and trivial error rates, except Linear, Mixed, Sinusoidal and Cosine equations. The assessment of the models using numerical methods revealed that the Quadratic and Inverse equations based models provide the highest predictability of the compressive strength at 28 days and consistency, respectively. Hence, they can be used as a reliable tool in mixture design of the UHPC.

Simulation of underwater reverberation signals (수중 잔향음 신호 모의)

  • Oh, Sun-Taek;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.66-74
    • /
    • 1994
  • Simulation of sonar reverberation time series is very useful because most acoustic models are power level models and have a difficulty when performance of hardware system is evaluated under the reverberant condition. Thus, in this paper, the simulation of reverberation time series is attempted, First, normalized spectrum, whose bandwidth is varying in the frequency domain and which has zero-mean Gaussian distribution, is calculated at pre-selected receiving time. Second, reverberation levels given by underwater acoustic model are combined with normalized spectrum in the frequency domain. Finally, nonstationary sonar reverberation time series are simulated by IFT(Inverse Fourier Transform).

  • PDF

A Study on Accelerated Life Test of Halogen Lamps for Medical Device (의료용 할로겐램프의 가속수명시험에 관한 연구)

  • Jung, Jae Han;Kim, Myung Soo;Lim, Heonsang;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.659-672
    • /
    • 2013
  • Purpose: The purpose of this study was to estimate life time of halogen lamps and acceleration factors using accelerated life test. Methods: Voltage was selected as an accelerating variable through the technical review about failure mechanism. The test was performed at 14.5V, 15.5V and 16.5 for 4,471 hours. It was assumed that the lifetime of Halogen lamps follow Weibull distribution and the inverse power life-stress relationship models. Results: Mean lifetimes of pin and screw types were 19,477 hours and 6,056 hours, respectively. In addition, acceleration factor of two items are calculated as 4.8 and 2.2 based on 15.5V, respectively. Conclusion: The life-stress relationship, acceleration factor, and MTTF at design condition are estimated by analyzing the accelerated life test data. These results suggest that voltage was very important factor to accelerate life time in the case of halogen lamps and the life time of pin type is three times longer than screw type lamps.

Characteristics Improvement of a PZT Actuator for Metal Printing (메탈 프린팅용 압전액추에이터의 특성개선)

  • Yun, S.N.;Ham, Y.B.;Kim, C.Y.;Park, P.Y.;Kang, J.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • The purpose of this paper is to improve the hysteresis characteristics of a stack type piezoelectric actuator using system identification and tracking control. Recently, several printing methods that are cost less and faster than previous semiconductor processes have been developed for the production of electric paper and RFID(Radio Frequency IDentification). The system proposed in this study prints by spraying the molten metal. And this system consist of a nozzle, heating furnace, operating actuator and an XYZ 3-axis stage. As an operating system, the piezoelectric(PZT) actuator is a very useful tool for position control of the metal printing system. However, the PZT actuator has a hysteresis nonlinearity due to the ferroelectric characteristics of the PZT element. This hysteresis causes problem position control characteristics in the system and deteriorates the performance of the system. In this study, an investigation was conducted to improve the hysteresis characteristics of the PZT actuator that has an output displacement for the input voltage. In order to reduce the hysteresis nonlinearity of the PZT actuator, this proposed a inverse hysteresis model and a mathematic modeling method that can express the geometric relationship between voltage and displacement. In addition, system identification and PID control methods were examined. Also, it was confirmed that the proposed control strategy gives good tracking performance.

  • PDF