• Title/Summary/Keyword: Inverse Linear Quadratic Optimal Control

Search Result 13, Processing Time 0.029 seconds

A Study on the Design of a Looper Strip Controller and its Robustness for Hot Strip Mills Using ILQ Control (역최적제어(ILQ)를 이용한 열간압연시스템의 루퍼 장력제어기 설계 및 견실성 연구)

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.93-98
    • /
    • 2001
  • This paper studies on the design of an ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between each stand plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. The mathematical model for looper is firstly obtained by Taylor's linearization of nonlinear differential equations, where it is given as a linear and time invariant state-space equation. Secondly, a looper servo controller is designed by ILQ control algorithm, which is an inverse problem of LQ(Linear Quadratic optimal control) control. By tunning control gain arbitration parameters and time constants, it is shown that the ILQ looper servo controller has the performance that makes well to follow desired trajectories of both strip tension and looper angle.

  • PDF

Design of an ILQ Looper Controller for Rot Strip Mills (열간사상압연기의 루퍼시스템의 ILQ 제어기 설계)

  • Kim, Seong-Bae;Hwang, Lee-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1680-1689
    • /
    • 2002
  • This paper studies on the design of a looper control system for hot strip mill finisher using ILQ(Inverse Linear Quadratic optimal control) control method. The loopers are placed between each rolling stands and looper control plays an important role in regulating strip tension. The strip tension is controlled by raising and lowering the looper and by changing the speed of main work rolls. Firstly, it is shown from a nonlinear dynamic simulation that the strip tension is more influenced by difference of rolling speed than that of the looper angle. Secondly, a servo controller of the looper is designed using ILQ control method of which the characteristics and algorithms are simply introduced. Finally, the performances of the ILQ servo controller are compared with those of the LQI servo controller from computer simulation. In result, it is shown that the proposed ILQ servo controller has the better performances and robustness far parameter perturbations and disturbances than those of LQI controller.

Robust ILQ controller design of hot strip mill looper system

  • Kim, Seong-Bae;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.5-75
    • /
    • 2001
  • In this paper, we study design of a ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between stands plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. A Looper servo controller is designed by ILQ control theory which is an inverse problem of LQ(Linear Quadratic optimal control) control. The mathematical model for looper system is obtained by Taylor´s linearization of nonlinear differential equations. Then we designed linear controller for linearization model by using the ILQ control algorithm. Thereafter this controller is applied to the nonlinear model for model identification. As a result, we show the controller´s robustness for the model error, external disturbance and sensor noise.

  • PDF

A Study on the Effectiveness of ILQ Algorithm in Active Structural Control (건축 구조물의 능동 제진에 있어 ILQ 제어 알고리즘의 유용성에 관한 연구)

  • Lee, Jin-Ho;Hwang, I-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.140-145
    • /
    • 2001
  • Various control algorithms are available to suppress the vibration of a system subjected to disturbances. LQ algorithm is simple and easy to implement the hardwares, but it lacks robustness for uncertainties and often causes difficulty in determining the weighting matrices. This study focuses on the effectiveness ILQ(Inverse Linear Quadratic optimal control) algorithm as the alternative to LQ applied to control the vibration of a building under the seismic excitation. The building is of moment resisting steel frames and assumed to behave within the elastic range. The brief overview of LQ and ILQ algorithms is introduced, and the displacement responses of the structure using ILQ algorithm are compared with those obtained from LQ control. The magnitude of control forces are also determined and compared for both LQ and ILQ algorithm.

  • PDF

Looper-Tension Control of Strip Top-Tail Parts for Hot Rolling Mills (열간압연공정의 스트립 선미단부 루퍼-장력 제어)

  • Hwang, I-Cheol
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • This paper designs a looper-tension controller for strip top-tail parts in hot strip finishing mills. A three-degree linear model of the looper-tension system is derived by a Taylor's linearization method, where the actuator's dynamics are ignored because of their fast responses. A feedforward shaping controller for the strip top part and a feedforward model reference controller for the strip tail part are respectively designed, they are combined with an ILQ(Inverse Linear Quadratic optimal control) feedback controller for the strip middle part. It is shown from by a computer simulation that the proposed controller is very effective to the strip top-tail parts including the middle part.

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.

Feedback Linearization for the Looper System of Hot Strip Mills

  • Hwang, I-Cheol;Kim, Seong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.56.5-56
    • /
    • 2002
  • This paper studies on the feedback linearization of the looper system for hot strip mills, where the looper system plays an important role in regulating the strip tension. Firstly, nonlinear dynamic equations of the looper system are simply introduced. Secondly, using the static feedback linearization algorithm, a linear model of the looper system is obtained, of which usefulness is validated from comparison between the linear model and the nonlinear model, and design of LQI(Linear Ouadratic Integral optimal control) and ILQ (Inverse Linear Quadratic optimal control) looper control systems. In result, it is shown that the linear looper model by the feedback linearization well describes nonlin...

  • PDF

Inverse Optimal Design of Formation/Velocity Consensus Protocol for Mobile Robots Based on LQ Inverse Optimal Second-order Consensus (LQ-역최적 2차 일치제어에 기반한 이동로봇에 대한 대형·속도일치 프로토콜의 역최적 설계)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • In this paper, we propose an inverse optimal distributed protocol for the formation and velocity consensus of nonholonomic mobile robots. The communication among mobile robots is described by a simple undirected graph, and the mobile robots' kinematics are considered. The group of mobile robots driven by the proposed protocols asymptotically achieves the desired formation and group velocity in an inverse optimal fashion. The design of the protocols is based on dynamic feedback linearization and the proposed linear quadratic (LQ) inverse optimal second-order consensus protocol. A numerical simulation is given to verify the effectiveness of the proposed scheme.

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.