• Title/Summary/Keyword: Inverse Kinematics Systems

Search Result 102, Processing Time 0.043 seconds

Kinematics and Optimization of 2-DOF Parallel Manipulator with Revolute Actuators and a Passive Leg

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.828-839
    • /
    • 2006
  • In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are round. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator.

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

The Control of Robot Manipulator us ins Fuzzy Inverse Kinematics Mapping and Genetic Algorithm (퍼지 역기구학 맵핑과 유전자 알고리즘을 이용한 로봇 매니퓰레이터의 제어)

  • Joo Young-jin;Choi Woo-Kyung;Yon Jung-Heum;Kim Sung-hyun;Jeon Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.309-312
    • /
    • 2005
  • 로봇 매니퓰레이터의 제어를 위해서는 정확한 값의 역기구학 값을 구해야한다 하지만 일반적으로 역기구학의 경우 그 계산 과정이 매우 복잡하여 실시간으로 처리하기 어렵다는 문제점이 있다. 본 논문에서는 로봇 매니퓰레이터를 퍼지 역기구학 맵핑 기법을 기반으로 제어를 한 후, 정기구학을 적합도 함수로 사용하는 유전자 알고리즘을 이용하여, 좀더 빠르고, 높은 정확도를 가지는 제어를 구현하고자 한다.

  • PDF

Trajectory Tracking Performance Analysis of Underwater Manipulator for Autonomous Manipulation

  • Chae, Junbo;Yeu, Taekyeong;Lee, Yeongjun;Lee, Yoongeon;Yoon, Suk-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.180-193
    • /
    • 2020
  • In this study, the end-effector tracking performance of a manipulator installed on a remotely operated vehicle (ROV) for autonomous underwater intervention is verified. The underwater manipulator is an ARM 7E MINI model produced by the ECA group, which consists of six joints and one gripper. Of the six joints of the manipulator, two are revolute joints and the other four are prismatic joints. Velocity control is used to control the manipulator with forward and inverse kinematics. When the manipulator approaches a target object, it is difficult for the ROV to maintain its position and posture, owing to various disturbances, such as the variation in both the center of mass and the reaction force resulting from the manipulator motion. Therefore, it is necessary to compensate for the influences and ensure the relative distance to the object. Simulations and experiments are performed to track the trajectory of a virtual object, and the tracking performance is verified from the results.

Development of Biped Walking Robot with Stable Walking (안정적 보행을 갖는 이족 보행 로봇의 개발)

  • Seo, Chang-Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.82-90
    • /
    • 2008
  • In this paper, we introduce a biped walking robot which can do static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and is constructed by 22 RC servo motors. Before making an active algorithm, we generate the motions of robot with a motion simulator developed using C language. The two dimensional simulator is based on the inverse kinematics and D-H transform. The simulator implements various motions as we input the ankle's trajectory. Also the simulator is developed by applying the principle of inverted pendulum to acquisite the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle or pelvic when the robot lifts up its one side leg during the walking. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which is connected with laptop computer by serial cable.

  • PDF

Kinematic Modeling for Position Feedback Control of an 2 - D.O.F Wheeled Mobile Robot (2-자유도 이동 로보트의 위치 궤환제어를 위한 기구학 모델링)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.27-40
    • /
    • 1996
  • This paper proposed a kinematic modeling methodlogy and feedback control system based on kinematics for 2 degrees of freedom of 4-wheeled mobile robot. We assigned coordinate systems to specify the transformation matirx and write the kinematic equation of motion. We derived the actuated inverse and sensed forwared solution for the calculation of actual robot orientation and the desired robot orientation. It is the most significant error and has the largest impact on the motion accuracy. To calculate the WMR position in real time, we introduced the dead-reckoning algorithm and composed two feedback control system that is based on kinematics. Through the simulation result, we compare with the ffedback control system for position control.

  • PDF

A trajectory prediction of human reach (Reach 동작예측 모델의 개발)

  • 최재호;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.787-796
    • /
    • 1995
  • A man model is a useful design tool for the evaluation of man machine systems and products. An arm reach trajectory prediction for such a model will be specifically useful to present human activities and, consequently, could increase the accuracy and reality of the evaluation. In this study, a three-dimensional reach trajectory prediction model was developed using an inverse kinematics technique. The upper body was modeled as a four link open kinematic chain with seven degrees of freedom. The Resolved Motion Method used for the robot kinematics problem was used to predict the joint movements. The cost function of the perceived discomfort developed using the central composite design was also used as a performance function. This model predicts the posture by moving the joints to minimize the discomfort on the constraint of the end effector velocity directed to a target point. The results of the pairwise t-test showed that all the joint coordinates except the shoulder joint's showed statistically no differences at .alpha. = 0.01. The reach trajectory prediction model developed in this study was found to accurately simulate human arm reach trajectory and the model will help understand the human arm reach movement.

  • PDF

Study on Development of a machining robot using Parallel mechanism

  • Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki;Kyung, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • This research develops the robot for the machining work. For machining work(cutting, milling, grilling, etc.), a robot manipulator is constructed by combining a parallel and a serial mechanism to increase stiffness as well as enlarge workspace. Based on the geometric constraints, this paper develops the formulation for inverse/direct kinematics and Jacobian to design and control a robot. Workspace is also analyzed to prove the advantage of the proposed robot.

  • PDF

Development of a Biped Walking Robot

  • Kim, Yong-Sung;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2350-2355
    • /
    • 2005
  • In this paper, we introduce biped walking robot which can static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and 22 RC servo motors are used to actuate. Before made an active algorithm, we generated the motions of robot with the motion simulator which developed using by C language. The two dimension simulator is Based on the inverse kinematics and D-H transform. The simulator implements various motions as inputted the ankle's trajectory. Also we developed a simulator which is applied the principle of inverted pendulum to acquires the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle and pelvis when the robot lifts up its one side leg during the working. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which connected with laptop computer by serial cable.

  • PDF

Computer simulation system of robot manipulator motion (로보트 매니퓰레이터 운동의 컴퓨터 시뮬레이션 시스템)

  • 김창부;윤장로
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.539-544
    • /
    • 1991
  • In order to verify robot motions for a desired work, it is necessary to visualize it on a computer screen. This paper presents a simulation algorithm for robot manipulator motion. Kinematic description is based on the Denavit- Hartenberg link representation. In order to be applied to various types of the robot manipulator, inverse kinematics make use of the Newton-Raphson iterative method with the least squares method. Joint variables are interpolated by the lowest polynomial segment satisfying acceleration continuity. The robot motions are generated and then animated on a computer screen in the form of skeleton type.

  • PDF