• Title/Summary/Keyword: Inverse Estimation

Search Result 459, Processing Time 0.026 seconds

Linear Region Extension of MR Curve in ML Based Monopulse (ML 기반 모노 펄스 MR 커브의 선형 영역의 확장)

  • Kim, Heung-Su;Lim, Jong-Hwan;Yang, Hoon-Gee;Chung, Young-Seek;Kim, Doo-Soo;Lee, Hee-Young;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.748-751
    • /
    • 2012
  • The performance of a monopulse estimator is depend on its monopulse ratio(MR) curve. To improve its performance, a mathematical expression of the MR curve that is associated with an array the parameters is needed. In this paper, we present a novel monopulse estimator that uses the inverse function of a MR curve for the Maximum Likelihood (ML)-based monopulse estimator. It is shown that the proposed method can extend the linear region of the MR curve, which in turn improve the estimation accuracy. Moreover, it's performance is compared with the ML-based method through simulation.

Study of Spectral Reflectance Reconstruction Based on an Algorithm for Improved Orthogonal Matching Pursuit

  • Leihong, Zhang;Dong, Liang;Dawei, Zhang;Xiumin, Gao;Xiuhua, Ma
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.515-523
    • /
    • 2016
  • Spectral reflectance is sparse in space, and while the traditional spectral-reconstruction algorithm does not make full use of this characteristic sparseness, the compressive sensing algorithm can make full use of it. In this paper, on the basis of analyzing compressive sensing based on the orthogonal matching pursuit algorithm, a new algorithm based on the Dice matching criterion is proposed. The Dice similarity coefficient is introduced, to calculate the correlation coefficient of the atoms and the residual error, and is used to select the atoms from a library. The accuracy of Spectral reconstruction based on the pseudo-inverse method, Wiener estimation method, OMP algorithm, and DOMP algorithm is compared by simulation on the MATLAB platform and experimental testing. The result is that spectral-reconstruction accuracy based on the DOMP algorithm is higher than for the other three methods. The root-mean-square error and color difference decreases with an increasing number of principal components. The reconstruction error decreases as the number of iterations increases. Spectral reconstruction based on the DOMP algorithm can improve the accuracy of color-information replication effectively, and high-accuracy color-information reproduction can be realized.

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

A Kalman filter based algorithm for wind load estimation on high-rise buildings

  • Zhi, Lun-hai;Yu, Pan;Tu, Jian-wei;Chen, Bo;Li, Yong-gui
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • High-rise buildings are generally sensitive to strong winds. The evaluation of wind loads for the structural design, structural health monitoring (SHM), and vibration control of high-rise buildings is of primary importance. Nevertheless, it is difficult or even infeasible to measure the wind loads on an existing building directly. In this regard, a new inverse method for evaluating wind loads on high-rise buildings is developed in this study based on a discrete-time Kalman filter. The unknown structural responses are identified in conjunction with the wind loads on the basis of limited structural response measurements. The algorithm is applicable for estimating wind loads using different types of wind-induced response. The performance of the method is comprehensively investigated based on wind tunnel testing results of two high-rise buildings with typical external shapes. The stability of the proposed algorithm is evaluated. Furthermore, the effects of crucial factors such as cross-section shapes of building, the wind-induced response type, errors of structural modal parameters, covariance matrix of noise, noise levels in the response measurements and number of vibration modes on the identification accuracy are examined through a detailed parametric study. The research outputs of the proposed study will provide valuable information to enhance our understanding of the effects of wind on high-rise buildings and improve codes of practice.

Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area (서울지역 라돈농도의 분포예측을 위한 공간분석법 연구)

  • Baek, Seung-A;Lee, Tae-Jung;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

Soft Detection using QR Decomposition for Coded MIMO System (부호화된 MIMO 시스템에서 QR 분해를 이용한 효율적인 연판정 검출)

  • Zhang, Meixiang;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.535-544
    • /
    • 2012
  • Multi-Input Multi-Output (MIMO) transmission is now considered as one of essential techniques enabling high rate data transmissions in wireless communication systems. In addition, severe channel impairments in wireless systems should be compensated by using highly efficient forward error correction (FEC) codes. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection information (SDDI), are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of SDDI from the MIMO detection process. In this paper, we propose a soft MIMO detection scheme using QR decomposition of channel matrices as an efficient means to provide accurate SDDI to the iterative decoder. The proposed method employed a two sequential soft MIMO detection process in order to reduce computational complexity. Compared to the soft ZF method calculating the direct inverse of the channel matrix, the complexity of the proposed method can be further reduced as the number of antennas is increased, without any performance degradation.

Using visibility to estimate PM2.5 concentration trends in Seoul and Chuncheon from 1982 to 2014 (시정을 이용하여 추정한 1982~2014년 서울과 춘천의 PM2.5 농도 변화 추이)

  • Lee, Yong-Hee;Kwak, Kyung-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.156-165
    • /
    • 2018
  • Long-term trend analysis on air pollutant concentrations is very important to diagnose the present status and plan for the future. In this study, the long-term trends of $PM_{2.5}$ concentrations were estimated based on the relationship between the visibility and $PM_{2.5}$ concentration regarding the effects of relative humidity in Seoul and Chuncheon. The relationships between the visibility and $PM_{2.5}$ concentration were derived from the measurement data in 2015 and 2016. Then, the annual trends of $PM_{2.5}$ concentration from 1982 to 2014 were estimated and compared to those of $PM_{10}$ concentration available in Seoul and Chuncheon. During the estimation process, four ranges of relative humidity were considered such as less than 30%, 31~50%, 51~70%, and 71~90%. In Seoul and Chuncheon, the visibility and $PM_{2.5}$ concentration generally have the inverse relationship while the visibility decreases as the relative humidity increases. The estimated $PM_{2.5}$ concentrations similarly showed the decreasing tendencies from 2006 to 2012 in Seoul and Chuncheon. However, the estimated $PM_{2.5}$ concentrations showed the increasing tendency before 2005 in Chuncheon in contrast to the decreasing tendency in Seoul. This implies that the long-term trends of $PM_{2.5}$ concentration in different cities in South Korea reflect the local influencing factors. For example, 'Special Act on the Improvement of Atmospheric Environment in the Seoul Metropolitan Area' can affect the different long-term trends in Seoul and Chuncheon. The estimated $PM_{2.5}$ concentrations were validated with the measured ones in Seoul and Chuncheon. While the general tendencies were well matched between the estimated and measured concentrations, the $PM_{2.5}$ concentration trends in 1990s and their monthly variations are needed to be improved quantitatively using more reference data for longer years.

Identification of Track Irregularity using Wavelet Transfer Function (웨이브렛 전달함수를 이용한 궤도틀림 식별)

  • Shin, Soo-Bong;Lee, Hyeung-Jin;Kim, Man-Cheol;Yoon, Seok-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • This paper presents a methodology for identifying track irregularity using a wavelet transfer function. An equivalent wavelet SISO (single-input single-output) transfer function is defined by the measured track geometry and the acceleration data measured at a bogie of a train. All the measured data with various sampling frequencies were rearranged according to the constant 25cm reference recording distance of the track recording vehicle used in the field. Before applying the wavelet transform, measured data were regressed by eliminating those out of the range. The inverse wavelet transfer function is also formulated to estimate track geometry. The closeness of the estimated track geometry to the actual one is evaluated by the coherence function and also by FRF (frequency response function). A track irregularity index is defined by comparing the variance of the estimation error from the intact condition and that from the current condition. A simulation study has been carried out to examine the proposed algorithm.

Effects of Periodontal Treatment on Glycated Hemoglobin A Levels in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Clinical Trials

  • Son, So-Hyun;Lee, Eun-Sun
    • Journal of dental hygiene science
    • /
    • v.18 no.3
    • /
    • pp.137-146
    • /
    • 2018
  • This systematic review aimed to investigate the effects of periodontal treatment on glycated hemoglobin A (HbA1c) levels in patients with type 2 diabetes who develop periodontal disease. The search of the MEDLINE, Embase, CINAHL, and Cochrane Library databases was completed on April 8, 2018. The study design was based on randomized clinical trials. Scaling and root planing was performed for the test group, whereas no periodontal treatment or simple oral training was performed for the control group. The main outcome variable was the change in HbA1c levels. We used the Review Manager statistical analysis software for the quantitative analysis of selected documents. Meta-analysis was performed using the inverse variance estimation method of the fixed-effect model to estimate the effects of periodontal treatment on HbA1c levels in patients with type 2 diabetes. A total of 1,011 documents were searched using search strategies, and 10 documents were included in the meta-analysis. The meta-analysis of the selected literature showed that periodontal treatment significantly reduced the HbA1c levels in patients with type 2 diabetes who develop periodontal disease (mean difference, -0.34; 95% confidence interval, -0.43 to -0.26; p<0.001). This study aimed to investigate the effects of periodontal treatment on HbA1c levels, which can be used as a basis for the increasing management of diabetic complications. To improve the quality of life and reduce the burden of medical expenses for patients with diabetes, periodontal disease management through nonsurgical periodontal treatment, such as scaling and root planing, is necessary.

Assessment of merging weather radar precipitation data and ground precipitation data according to various interpolation method (보간법에 따른 기상레이더 강수자료와 지상 강수자료의 합성기법 평가)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.849-862
    • /
    • 2017
  • The increased frequency of meteorological disasters has been observed due to increased extreme events such as heavy rainfalls and flash floods. Numerous studies using high-resolution weather radar rainfall data have been carried out on the hydrological effects. In this study, a conditional merging technique is employed, which makes use of geostatistical methods to extract the optimal information from the observed data. In this context, three different techniques such as kriging, inverse distance weighting and spline interpolation methods are applied to conditionally merge radar and ground rainfall data. The results show that the estimated rainfall not only reproduce the spatial pattern of sub-hourly rainfall with a relatively small error, but also provide reliable temporal estimates of radar rainfall. The proposed modeling framework provides feasibility of using conditionally merged rainfall estimation at high spatio-temporal resolution in ungauged areas.