• 제목/요약/키워드: Inverse Dynamic Method

검색결과 210건 처리시간 0.022초

Vibration analysis of a cracked beam with axial force and crack identification

  • Lu, Z.R.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제9권4호
    • /
    • pp.355-371
    • /
    • 2012
  • A composite element method (CEM) is presented to analyze the free and forced vibrations of a cracked Euler-Bernoulli beam with axial force. The cracks are introduced by using Christides and Barr crack model with an adjustment on one crack parameter. The effects of the cracks and axial force on the reduction of natural frequencies and the dynamic responses of the beam are investigated. The time response sensitivities with respect to the crack parameters (i.e., crack location, crack depth) and the axial force are calculated. The natural frequencies obtained from the proposed method are compared with the analytical results in the literature, and good agreement is found. This study shows that the cracks in the beam may have significant effects on the dynamic responses of the beam. In the inverse problem, a response sensitivity-based model updating method is proposed to identify both a single crack and multiple cracks from measured dynamic responses. The cracks can be identified successfully even using simulated noisy acceleration responses.

직접구동형로봇의 가감속시간 단축에 관한 연구 (Analysis to reduce the acceleration time and deceleration time of direct drive robot)

  • 임규영;이광남;고광일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.372-376
    • /
    • 1990
  • This paper represents a control method of improving the performance of direct drive robot. The direct transfer of torque and rotational speed of direct drive motor to the robot body without reduction gear makes the robot speed fast. However, the variation of inertia matrix and low friction cause the control difficult, and one more effort must be in the reducing the acceleration and deceleration time to reduce the cycle time. To fasten the cycle time and to improve the robustness of robot, one control method is developed, and implemented in the Goldstar DD robot. This method does not need to change the conventional PI type control structure, but one additional compensational control law is required. The control law can be obtained via inverse dynamic model of robot, and inverse model of existing control loop. The effects of this control law are shown in this paper.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

불완전 동적 데이터로부터 복합신소재로 보강된 교량의 함수기반 역해석에 의한 성능 평가 (Performance assessment using the inverse analysis based a function approach of bridges repaired by ACM from incomplete dynamic data)

  • 이상열;노명현
    • 복합신소재구조학회 논문집
    • /
    • 제1권2호
    • /
    • pp.51-58
    • /
    • 2010
  • 본 연구는 차량 이동하중을 받는 손상된 콘크리트 슬래브교량의 강성저하를 규명하고, 복합신소재를 사용하여 보강 후 성능평가를 수행한다. 특히 마이크로 유전알고리즘에 의한 역해석에 기반하여 보강 전 후 각 요소에서의 강성변화를 수정된 2차변수 Gaussian 분포함수를 사용하여 정식화하였다. 본 연구에서 제안한 방법은 기존의 요소기반 접근 방식에 비하여 수치해석적인 관점에서 효율성을 갖는다. 개발한 알고리즘은 3차원 솔리드 요소를 사용하여 모델링한 교량의 동적 거동 시뮬레이션으로부터 계측한 데이터를 사전정보로 사용하여 검증하였다. 몇 가지 수치예제는 본 연구에서 개발한 방법이 실제교량과 수치모델간의 차이로 인한 오차 및 노이즈 등으로 인한 동적 계측치 오류 등이 고려되었음에도 강성분포 추정 및 성능 평가를 효율적으로 수행함을 보여준다.

  • PDF

Optimal Controller Design of One Link Inverted Pendulum Using Dynamic Programming and Discrete Cosine Transform

  • Kim, Namryul;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2074-2079
    • /
    • 2018
  • Global state space's optimal policy is used for offline controller in the form of table by using Dynamic Programming. If an optimal policy table has a large amount of control data, it is difficult to use the system in a low capacity system. To resolve these problem, controller using the compressed optimal policy table is proposed in this paper. A DCT is used for compression method and the cosine function is used as a basis. The size of cosine function decreased as the frequency increased. In other words, an essential information which is used for restoration is concentrated in the low frequency band and a value of small size that belong to a high frequency band could be discarded by quantization because high frequency's information doesn't have a big effect on restoration. Therefore, memory could be largely reduced by removing the information. The compressed output is stored in memory of embedded system in offline and optimal control input which correspond to state of plant is computed by interpolation with Inverse DCT in online. To verify the performance of the proposed controller, computer simulation was accomplished with a one link inverted pendulum.

이족보행로봇의 동적 보행을 위한 혼합 위치/힘 제어 (Hybrid Position/Force Control for Dynamic Walking of Biped Walking Robot)

  • 박인규;김진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.566-569
    • /
    • 2000
  • This hybrid position/force control for the dynamic walking of the biped robot is performed in this paper. After the biped robot was modeled with 14 degrees of freedom of the multibody dynamics, the equations of motion are constructed using velocity transformation technique. Then the inverse dynamic analysis is performed for determining the driving torques and the ground reaction forces. From this analysis, obtains the maximum ground contact force at the moment of contacting which act on the rear of the sole of swing leg and the distribution curve of the ground reaction. Because these maximum force and distribution type acts an important role to the stability of the whole dynamic walking, they are reduced and distributed smoothly by means of the trajectory of the modified ground reaction force. This new trajectory is used to the reference input for more stable dynamic walking of the whole walking region.

  • PDF

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

Structural and Mechanical Systems Subjected to Constraints

  • Lee, Eun-Taik;Chung, Heon-Soo;Park, Sang-Yeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1891-1899
    • /
    • 2004
  • The characteristics of dynamic systems subjected to multiple linear constraints are determined by considering the constrained effects. Although there have been many researches to investigate the dynamic characteristics of constrained systems, most of them depend on numerical analysis like Lagrange multipliers method. In 1992, Udwadia and Kalaba presented an explicit form to describe the motion for constrained discrete systems. Starting from the method, this study determines the dynamic characteristics of the systems to have positive semidefinite mass matrix and the continuous systems. And this study presents a closed form to calculate frequency response matrix for constrained systems subjected to harmonic forces. The proposed methods that do not depend on any numerical schemes take more generalized forms than other research results.

심해 잠수정 연결케이블의 안전성 평가에 관한 연구 (The Safety Assessment of the Connecting Cable in Deep Water Unmanned Underwater Vehicle)

  • 노인식;최병기;이종무
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, the dynamic response of the umbilical cable in a deep-water unmanned underwater vehicle system was analyzed. In order to analyze the forces acting on the cable, the launcher and umbilical cable were modeled by the simple 1-D mass-spring system. Damping and dynamic analysis was carried out by a direct time integration scheme using the $Newmark-{\beta}$ method with inverse iteration procedure, considering the nonlinear drag forces acting on the launcher. The obtained results of the present study can be used for the design of connecting the structure of the launcher and cable of the UUV system.

Optimal trajectory tracking control of a robot manipulator

  • Lee, Gwan-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.980-984
    • /
    • 1990
  • In order to find the optimal control law for the precise trajectory tracking of a robot manipulator, a perturbational control method is proposed based on a linearized manipulator dynamic model which can be obtained in a very compact and computationally efficient manner using the dual number algebra. Manipulator control can be decomposed into two parts: the nominal control and the corrective perturbational control. The nominal control is precomputed from the inverse dynamic model using the quantities of a desired trajectory. The perturbational control is obtained by applying the second-variational method on the linearized dynamic model. Simulation results for a PUMA-560 robot show that, by using this controller, the desired trajectory tracking performance of the robot can be achieved, even in the presence of large initial positional disturbances.

  • PDF