• Title/Summary/Keyword: Inventory Control Policy

Search Result 89, Processing Time 0.027 seconds

A Simulation Study for Inventory Policies in a Multi-Echelon Supply Chain (다단계 공급체인에서 재고정책들에 대한 시뮬레이션 연구)

  • 김흥남;박양병
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • Managing multi-echelon inventory systems has gained importance over the last decade mainly because integrated control of supply chains consisting of several processing and distribution stages has become feasible through modern information technology. Determination of optimal inventory policy for multi-echelon supply chain is made difficult by the complex interaction between the different levels. In this paper, we investigate performance of five inventory policies (fixed quantity order policy, fixed interval order policy, compromised order policy, lead time-fixed quantity order policy, and mixed order policy) in a multi-echelon supply chain by using a simulation model constructed with AweSim simulation language. The results of the simulation study show that the mixed order policy is the best among five inventory policies in the most test problems except the case when the stockout cost per unit is much higher than the inventory holding and transportation costs per unit.

  • PDF

Development of Inventory Control System for Large-scale Retailers using Neural Network and (s*,S*) Policy (신경회로망과 (s*,S*) 정책을 이용한 대규모 유통업을 위한 재고 관리 시스템의 개발)

  • 김우주
    • The Journal of Information Systems
    • /
    • v.6 no.1
    • /
    • pp.223-256
    • /
    • 1997
  • Since the business scales of retailing companies become to be very large and the number of items dealt increases explosively, automation of inventory management becomes one of the most important issues to solve in retailing industry. In order to accomplish this automation of inventory management, there must be a great need to a method which can perform real-time decision making on inventory control in an automatic fashion, while communicating with inventory information systems like POS system and automatic warehousing system. But even in this circumstance, there are also many obstructions to such automation like varying demands, limited capacity of warehouse and exhibition room, need for strategic consideration on inventory control, etc., in a real sense. Due to these reasons, it seems very difficult that most large-scaled retailing companies get fully automated inventory management system. To overcome those difficulties and reflect them into inventory control, we propose a automated inventory control methodology for retailing industry based on neural network and policy model. Especially, policy model is devised to deal with dynamic varying demands and using this model, strategic goals on inventory can be considered into inventory control mechanism. Our proposed approach is implemented in workstation and its performance is also empirically verified also against to real case of one of the major retailing firm in Korea.

  • PDF

A Forecast-based Inventory Control Policy for an Item with Non-stationary Demand (비정상 수요를 가진 품목을 위한 예측기반 재고정책)

  • Park, Sung-Il;Kim, Jong-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.216-228
    • /
    • 2011
  • A logistics system involving a supplier who produces and delivers a single product and a buyer who receives and sells the product to the final customers is analyzed. In this system, the supplier and the buyer establish a contract which specifies that the supplier will deliver necessary amount of the product to raise inventory up to a specified position at the beginning of each period. A new periodic order-up-to-level inventory control policy specifically designed for nonstationary end customer's demand is proposed for the system. Simulations are used to test the efficiency of the proposed policy. An analysis of the test results reveals that the proposed policy performs much better than does the existing order-up-to-level policy, especially when the demand is nonstationary.

Development of the Standard Blood Inventory Level Decision Rule in Hospitals (병원의 표준 혈액재고량 산출식 개발)

  • Kim, Byoung-Yik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.1 s.23
    • /
    • pp.195-206
    • /
    • 1988
  • Two major issues of the blood bank management are quality assurance and inventory control. Recently, in Korea blood donation has gained popularity increasingly to allow considerable improvement of the quality assurance with respect to blood collection, transportation, storage, component preparation skills and hematological tests. Nevertheless the inventory control, the other issue of blood bank management, has been neglected so far. For the supply of blood by donation barely meets the demand, the blood bank policy on the inventory control has been 'the more the better.' The shortage itself by no means unnecessitate inventory control. In fact, in spite of shortage, no small amount of blood is outdated. The efficient blood inventory control makes it possible to economize the blood usage in the practice of state-of-the-art medical care. For the efficient blood inventory control in Korean hospitals, this tudy is to develop formulae forecasting the standard blood inventory level and suggest a set of policies improving the blood inventory control. For this study informations of $A^+$ whole bloods and packed cells inventory control were collected from a University Hospital and the Central Blood Bank of the Korean Red Cross. Using this informations, 1,461 daily blood inventory records were formulated.48 varieties of blood inventory control environment were identified on the basis of selected combinations of 4 inventory control variables-crossmatch, transfusion, inhospital donation and age of bloods from external supply. In order to decide the optimal blood inventory level for each environment, simulation models were designed to calculate the measures of performance of each environment. After the decision of 48 optimal blood inventory levels, stepwise multiple regression analysis was started where the independent variables were 4 inventory control variables and the dependent variable was optimal inventory level of each environment. Finally the standard blood inventory level decision rule was developed using the backward elimination procedure to select the best regression equation. And the effective alternatives of the issuing policy and crossmatch release period were suggested according to the measures of performance under the condition of the standard blood inventory level. The results of this study' were as follows ; 1. The formulae to calculate the standard blood inventory level($S^*$)was $S^*=2.8617X(d)^{0.9342}$ where d is the mean daily crossmatch(demand) for a blood type. 2. The measures of performace - outdate rate, average period of storage, mean age of transfused bloods, and mean daily available inventory level - were improved after maintenance of the standard inventory level in comparison with the present system. 3. Issuing policy of First In-First Out(FIFO) decreased the outdate rate, while Last In-First Out(LIFO) decreased the mean age of transfused bloods. The decrease of the crossmatch release period reduced the outdate rate and the mean age of transfused bloods.

  • PDF

Application Case of Safety Stock Policy based on Demand Forecast Data Analysis (수요예측 데이터 분석에 기반한 안전재고 방법론의 현장 적용 및 효과)

  • Park, Hung-Su;Choi, Woo-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.61-67
    • /
    • 2020
  • The fourth industrial revolution encourages manufacturing industry to pursue a new paradigm shift to meet customers' diverse demands by managing the production process efficiently. However, it is not easy to manage efficiently a variety of tasks of all the processes including materials management, production management, process control, sales management, and inventory management. Especially, to set up an efficient production schedule and maintain appropriate inventory is crucial for tailored response to customers' needs. This paper deals with the optimized inventory policy in a steel company that produces granule products under supply contracts of three targeted on-time delivery rates. For efficient inventory management, products are classified into three groups A, B and C, and three differentiated production cycles and safety factors are assumed for the targeted on-time delivery rates of the groups. To derive the optimized inventory policy, we experimented eight cases of combined safety stock and data analysis methods in terms of key performance metrics such as mean inventory level and sold-out rate. Through simulation experiments based on real data we find that the proposed optimized inventory policy reduces inventory level by about 9%, and increases surplus production capacity rate, which is usually used for the production of products in Group C, from 43.4% to 46.3%, compared with the existing inventory policy.

Inventory control for the item with multiple demand classes

  • Seo, Jungwon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.427-431
    • /
    • 1994
  • The objective of this paper is to provide an inventory control policy for the system that carries a single item with a multiple demand classes, when the demand is Poisson distributed random variable. The inventory control process includes the process of determining the reorder point, and the process of inventory control during the lead time. The goal of the optimization process is to achieve the service level of each demand class as well as the system-wide total service level at a preset desired service level while sustaining a minimum average inventory.

An Alternative Approach to the Robust Inventory Control Problem

  • Park, Kyungchul
    • Management Science and Financial Engineering
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • The robust inventory control problem was proposed and solved by Bertsimas and Thiele (2006). Their results are very interesting in that the problem can be solved easily and also the solution possesses nice properties of those found in the traditional stochastic inventory control problem. However, their formulation is shown to be incorrect, which invalidates all of the results given there. In this paper, we propose an alternative formulation of the problem which uses a different but practically applicable uncertainty set. Under the newly proposed model, all of the useful properties given in Bertsimas and Thiele (2006) will be shown to be valid.

An Optimal Ordering policy on Both Way Substitutable Two-Commodity Inventory Control System

  • Tanaka, Masatoshi;Yoshikawa, Shin-ichi;Tabata, Yoshio
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.145-157
    • /
    • 2005
  • There are a lot of raw materials, work-in-processes and finished goods in manufacturing industry. Here, the less stock of materials and work-in-processes manufacturing industry has, the worse the rate of the production is. Inversely, the more manufacturing industry has, the more expensive the cost to support them is. Thus, it is important for us to balance them efficiently. In general, inventory problems are to decide appropriate times to produce goods and to determine appropriate quantities of goods. Therefore, inventory problems require as more useful information as possible. For example, there are demand, lead time, ordering point and so on. In this paper, we deal with an optimal ordering policy on both way substitutable two-commodity inventory control system. That is, there is a problem of how to allocate the produced two kinds of goods in a factory to m areas so as to minimize the total expected inventory cost. The demand of each area is probabilistic, and we adopt the exponential distribution as a probability density function of demand. Moreover, we provide numerical examples of the problem.

A Design for Integrated Logistics System with Inventory Control and Transportation Planning Problem (재고와 수송계획문제를 고려한 통합물류시스템 설계)

  • 우태희;조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.37-52
    • /
    • 1998
  • In many distribution systems important cost reductions and/or service improvements may be achieved by adopting an efficient inventory policy and proper selection of facilities. These efficiency improvements and service enhancements clearly require an integrated approach towards various logistical planning functions. The areas of inventory control and transportation planning need to be closely coordinated. The purpose of this paper is to construct an integrated model that can minimize the total cost of the transportation and inventory systems between multiple origin and destination points, where in origin point i has the supply of commodities and in destination point j requires the commodities. In this case, demands of the destination points are assumed random variables which have a known probability distribution. Using the lot-size reorder-point policy and the safety stock level that minimize total cost we find optimal distribution centers which transport the commodities to the destination points and suggest an optimal inventory policy to the selected distribution center. We also show if a demand greater than one unit will occur at a particular time, we describe the approximate optional replenishment policy from computational results of this lot-size reorder-point policy. This model is formulated as a 0-1 nonlinear integer programming problem. To solve the problem, this paper proposes heuristic computational procedures and a computer program with UNIX C language. In the usefulness review, we show the meaning and validity of the proposed model and exhibit the results of a comparison between our approach and the traditional approach, respectively.

  • PDF

Coordination of Component Production and Inventory Rationing for a Two-Stage Supply Chain with a VMI Type of Supply Contract (적시 부품 공급 계약을 갖는 두 단계 공급망에서 부품 생산과 재고 분배의 통합적 구현)

  • Kim, Eun-Gab
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.2
    • /
    • pp.45-56
    • /
    • 2012
  • This paper considers a supply chain consisting of a component manufacturer and a product manufacturer. The component manufacturer provides components for the product manufacturer based on a vendor-managed inventory type of supply contract, and also faces demands from the market with the option of to accept or reject each incoming demand. Using the Markov decision process model, we examine the structure of the optimal production control and inventory rationing policy. Two types of heuristics are presented. One is the fixed-buffer policy and the other uses two linear functions. We implement a computational study and present managerial insights based on the observations.