• Title/Summary/Keyword: Invariant Images

Search Result 312, Processing Time 0.027 seconds

Definition and Analysis of Shadow Features for Shadow Detection in Single Natural Image (단일 자연 영상에서 그림자 검출을 위한 그림자 특징 요소들의 정의와 분석)

  • Park, Ki Hong;Lee, Yang Sun
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.165-171
    • /
    • 2018
  • Shadow is a physical phenomenon observed in natural scenes and has a negative effect on various image processing systems such as intelligent video surveillance, traffic surveillance and aerial imagery analysis. Therefore, shadow detection should be considered as a preprocessing process in all areas of computer vision. In this paper, we define and analyze various feature elements for shadow detection in a single natural image that does not require a reference image. The shadow elements describe the intensity, chromaticity, illuminant-invariant, color invariance, and entropy image, which indicate the uncertainty of the information. The results show that the chromaticity and illuminant-invariant images are effective for shadow detection. In the future, we will define a fusion map of various shadow feature elements, and continue to study shadow detection that can adapt to various lighting levels, and shadow removal using chromaticity and illuminance invariant images.

Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images (드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교)

  • Lee, Chung Ho;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • Images taken using drones have been applied to fields that require rapid decision-making as they can quickly construct high-quality 3D spatial information for small regions. To construct spatial information based on drone images, it is necessary to determine the relationship between images by extracting keypoints between adjacent drone images and performing image matching. Therefore, in this study, three study regions photographed using a drone were selected: a region where parking lots and a lake coexisted, a downtown region with buildings, and a field region of natural terrain, and the performance of AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) algorithms were analyzed. The performance of the keypoints extraction algorithms was compared with the distribution of extracted keypoints, distribution of matched points, processing time, and matching accuracy. In the region where the parking lot and lake coexist, the processing speed of the BRISK algorithm was fast, and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the downtown region with buildings, the processing speed of the AKAZE algorithm was fast and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the field region of natural terrain, the keypoints and matched points of the SURF algorithm were evenly distributed throughout the image taken by drone, but the AKAZE algorithm showed the highest matching accuracy and processing speed.

Rotation and Size Invariant Fingerprint Recognition Using The Neural Net (회전과 크기변화에 무관한 신경망을 이용한 지문 인식)

  • Lee, Nam-Il;U, Yong-Tae;Lee, Jeong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.215-224
    • /
    • 1994
  • In this paper, the rotation and size invariant fingerprint recognition using the neural network EART (Extended Adaptive Resonance Theory) is studied ($515{\times}512$) gray level fingerprint images are converted into the binary thinned images based on the adaptive threshold and a thinning algorithm. From these binary thinned images, we extract the ending points and the bifurcation points, which are the most useful critical feature points in the fingerprint images, using the $3{\times}3$ MASK. And we convert the number of these critical points and the interior angles of convex polygon composed of the bifurcation points into the 40*10 critical using the weighted code which is invariant of rotation and size as the input of EART. This system produces very good and efficient results for the rotation and size variations without the restoration of the binary thinned fingerprints.

  • PDF

A Study for Introducing a Method of Detecting and Recovering the Shadow Edge from Aerial Photos (항공영상에서 그림자 경계 탐색 및 복원 기법 연구)

  • Jung, Yong-Ju;Jang, Young-Woon;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.327-334
    • /
    • 2006
  • The aerial photos need in a simple object such as cartography and ground cover classification and also in a social objects such as the city plan, environment, disaster, transportation etc. However, the shadow, which includes when taking the aerial photos, makes a trouble to interpret the ground information, and also users, who need the photos in their field tasks, have a restriction. Generally the shadow occurs by the building and surface topography, and the detail cause is by changing of the illumination in an area. For removing the shadow this study uses the single image and processes the image without the source of image and taking situation. Also, applying the entropy minimization method it generates the 1-D gray-scale invariant image for creating the shadow edge mask and using the Canny edge detection creates the shadow edge mask, and finally by filtering in Fourier frequency domain creates the intrinsic image which recovers the 3-D color information and removes the shadow.

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences (공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.

Developing maps of affinely flat lie groups

  • Kim, Hyuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.509-518
    • /
    • 1997
  • In this paper, we study the developing maps of the Lie groups with left-invariant affinely flat structures. We make some bacis observations on the nature of the developing images and show that the developing map for an incomplete affine structure splits as a product of a covering map of codimension 1 and a diffeomorphism of dimension 1.

  • PDF

Methods for Extracting Feature Points from Ultrasound Images (초음파 영상에서의 특징점 추출 방법)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.59-60
    • /
    • 2020
  • 본 논문에서는 특징점 추출 알고리즘 중 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 유의미한 특징점을 추출하기 위한 방법을 제안하고자한다. 추출된 특징점을 실제 이미지에 display 해봄으로써 성능을 확인해본다.

  • PDF

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

Image-based Image Retrieval System Using Duplicated Point of PCA-SIFT (PCA-SIFT의 차원 중복점을 이용한 이미지 기반 이미지 검색 시스템)

  • Choi, GiRyong;Jung, Hye-Wuk;Lee, Jee-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.275-279
    • /
    • 2013
  • Recently, as multimedia information becomes popular, there are many studies to retrieve images based on images in the web. However, it is hard to find the matching images which users want to find because of various patterns in images. In this paper, we suggest an efficient images retrieval system based on images for finding products in internet shopping malls. We extract features for image retrieval by using SIFT (Scale Invariant Feature Transform) algorithm, repeat keypoint matching in various dimension by using PCA-SIFT, and find the image which users search for by combining them. To verify efficiency of the proposed method, we compare the performance of our approach with that of SIFT and PCA-SIFT by using images with various patterns. We verify that the proposed method shows the best distinction in the case that product labels are not included in images.