• 제목/요약/키워드: Invariant Feature

검색결과 433건 처리시간 0.034초

위치이동에 무관한 웨이블릿 변환을 이용한 패턴인식 (Patterns Recognition Using Translation-Invariant Wavelet Transform)

  • 김국진;조성원;김재민;임철수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.281-286
    • /
    • 2003
  • 웨이블릿 변환(Wavelet Transform)은 공간-주파수 영역에서 신호의 국소특성을 효율적으로 구현할 수 있다 하지만, 웨이블릿 변환을 패턴 인식을 위한 특징 추출에 적용할 경우, 입력 신호의 위치 이동에 따라 추출된 특징 값이 변화하게 되어 인식률이 낮아지는 결함이 있다. 본 논문에서는 웨이블릿 변환을 패턴 인식에 적용할 경우 발생하는 입력 신호의 위치 이동에 따른 문제점을 보완하여 노이즈에 강인한 홍채인식 알고리즘을 제안한다. 실험을 통하여 제안한 알고리즘의 우수성을 보여 준다.

Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 (Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform)

  • 이준복;김문화;장동식
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.21-26
    • /
    • 2003
  • 본 논문은 퓨리에 변환을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 기법을 제시한다. 특징 벡터는 3차원극좌표계를 이용하여 폐곡면 객체의 회전각도별 내측거리값을 퓨리에 변환을 통해 주파수 영역으로 변환하여 추출한다. 특징 벡터는 폐곡면 표면점과 중심점과의 관계를 나타내는 내측거리값을 활용하므로 위치 이동에 불변이고 내측거리값은 퓨리에 변환 전 정규화되기 때문에 크기 변화에 불변이며 퓨리에 변환 후 파워 스펙트럼을 적용하여 회전 변화 불변임을 보여주고 있다. 실험 결과 위치 이동, 크기 변화, 회전 변화에 불변임을 알 수 있고 서로 상이한 객체간에 변별력이 있어 객체 고유의 특징 벡터로써 활용이 가능함을 제시한다.

  • PDF

주파수 영역에서 각도 투영법을 이용한 회전 및 천이 불변 특징 추출 (Rotation and Translation Invariant Feature Extraction Using Angular Projection in Frequency Domain)

  • 이범식;김문철
    • 한국HCI학회논문지
    • /
    • 제1권2호
    • /
    • pp.27-33
    • /
    • 2006
  • 본 논문은 회전 및 천이 불변 이미지 텍스처 검색의 새로운 방식을 소개한다. 주파수 영역의 극 좌표계에서 동일한 공간주파수에서 각도방향으로 투영을 함으로써 각도 투영법을 만들어 냈으며, 제안된 각도 투영법을 이용하여 주파수 영역에서 푸리에 계수의 합과 표준 편차를 특징벡터로 이용하였다. 각도 투영법을 쉽게 구현하기 위하여 극 좌표계에서 라돈변환이 수행된다. 실험 시 MPEG-7 데이터를 이용하였으며 그 결과는 여러 텍스처 이미지를 검 색하는데 있어서 특징을 잘 구별해 내는 결과를 보여준다. 또한 제안된 회전 및 천이불변 특징 추출 알고리듬은 등 방성 텍스처나 국부적인 방향성을 보이는 텍스처 영상 검색에서 효율적인 검색률을 보인다.

  • PDF

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • 이재광;허욱열;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

A Feature-Based Robust Watermarking Scheme Using Circular Invariant Regions

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyung
    • 한국멀티미디어학회논문지
    • /
    • 제16권5호
    • /
    • pp.591-600
    • /
    • 2013
  • This paper addresses a feature-based robust watermarking scheme for digital images using a local invariant features of SURF (Speeded-Up Robust Feature) descriptor. In general, the feature invariance is exploited to achieve robustness in watermarking schemes, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are not considered carefully in security perspective. We propose embedding and detection methods where the watermark is bound with circular areas and inserted into extracted circular feature regions. These methods enhance the robustness since the circular watermark is inserted into the selected non-overlapping feature regions instead of entire image contents. The evaluation results for repeatability measures of SURF descriptor and robustness measures present the proposed scheme can tolerate various attacks, including signal processing and geometric distortions.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

3D Object Recognition Using SOFM (3D Object Recognition Using SOFM)

  • 조현철;손호웅
    • 지구물리
    • /
    • 제9권2호
    • /
    • pp.99-103
    • /
    • 2006
  • 3D object recognition independent of translation and rotation using an ultrasonic sensor array, invariant moment vectors and SOFM(Self Organizing Feature Map) neural networks is presented. Using invariant moment vectors of the acquired 16×8 pixel data of square, rectangular, cylindric and regular triangular blocks, 3D objects could be classified by SOFM neural networks. Invariant moment vectors are constant independent of translation and rotation. The recognition rates for the training and testing data were 95.91% and 92.13%, respectively.

  • PDF

에너지장 해석을 통한 영상 특징량 추출 방법 개발 (Image Feature Extraction Using Energy field Analysis)

  • 김면희;이태영;이상룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.404-406
    • /
    • 2002
  • In this paper, the method of image feature extraction is proposed. This method employ the energy field analysis, outlier removal algorithm and ring projection. Using this algorithm, we achieve rotation-translation-scale invariant feature extraction. The force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels. The image feature is acquired from relationship of local extrema using the ring projection method.

  • PDF

자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘 (An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform)

  • 이재광;허욱열;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF

SSD 알고리즘 기반 MI-FL을 적용한 회전 불변의 다중 객체 검출 시스템 구현 (Implementation of Rotating Invariant Multi Object Detection System Applying MI-FL Based on SSD Algorithm)

  • 박수빈;임혜연;강대성
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.13-20
    • /
    • 2019
  • 최근 CNN을 기반으로 한 객체 검출 기술의 연구가 활발하다. 객체 검출 기술은 자율주행차, 지능형 영상분석 등에서 중요한 기술로 사용된다. 본 논문에서는 CNN 기반의 객체 검출기 중 하나인 SSD(Single Shot Multibox Detector)에 MI-FL(Moment Invariant-Feature Layer)을 적용하여 회전 변형에 강인한 객체 검출 시스템을 제안한다. 먼저 VGG 네트워크를 기반으로 입력 이미지의 특징을 추출한다. 그 후 총 6개의 특징 계층(Feature layer)을 적용하여 객체의 위치 정보와 종류를 예측해 경계 박스들을 생성한다. 그 후 NMS 알고리즘을 이용해 가장 객체일 확률이 높은 경계 박스를 얻는다. 하나의 객체 경계 박스가 정해지면 MI-FL을 이용해 해당 영역의 불변 모멘트 특징을 추출하여 미리 저장하고 학습한다. 이후 검출 과정에서 미리 저장해둔 불면모멘트 특징 정보를 이용해 검출함으로써 회전된 이미지에 대해 기존 방법보다 더 강인한 검출이 가능하다. 기존의 SSD와 MI-FL을 적용한 SSD의 비교를 통해 약 4~5%의 성능 향상을 확인하였다.