• Title/Summary/Keyword: Inundation area

Search Result 389, Processing Time 0.021 seconds

Spatial Analysis of Flood Inundation for Ensuring Stream Space (하천공간 확보를 위한 홍수의 공간적 범람 분석)

  • Choi, Cheonkyu;Kim, Joohun;Kim, Kyuho;Kim, Gilho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.341-351
    • /
    • 2015
  • This study is to select the areas to ensure stream space or to implement flood defence measures according to flood frequencies by classifying the stream segment using river bed slope in Mangyeong river. The analysis result for each stream segment showed that the variation of flood inundation area was small in upper stream catchment. But in the lower stream area, the inundation area became larger greatly according to the increase of flood return period. This study classified the catchment of each steam segment as the region of ensuring stream space (ESS), below 10% residential area ratio, and the region of reinforcing flood defence (RFD), over 10% residential area ratio. The analysis results showed that the lower stream area included more RFD regions than upper stream area, and the upper stream area included more ESS regions than lower stream area. In future study, the regions stream spaces can be ensured will be analyzed considering the past stream morphology and the positions of wetlands.

Suitability Assessment for Flood Disaster Shelters of Jinju City (진주시 홍수재해용 대피소 적합성 평가)

  • Yoo, Hwan Hee;Son, Se Ryeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.91-99
    • /
    • 2012
  • Jinju city is operating by selecting 8 places as the flood inundation risk area and by designating shelters on this area targeting districts damaged by typhoon and heavy rain, in the past. This study selected the research area as Nabul district and Sangpyeong district where are located in the town and that has high population density out of districts with inundation risk. The network analysis of GIS was applied to the suitability assessment on location of shelter by calculating the moving speed and the arriving time after dividing it into children, general adults, and aged people in consideration of the evacuation condition in inundation disaster. As a result, it was indicated that optimal evacuation plan time for children and aged people exceeded in getting to the shelter because of evacuation time excess and that even general adults outrun the prescribed evacuation time in some districts. Accordingly, a problem for evacuation time was improved by additionally designating 1-2 shelters to existing shelters in Nabul and Sangpyeong districts. A countermeasure is needed to reduce life and property damage in disaster occurrence by implementing the evacuation warning and the age-based evacuation plan more specifically in the future.

Deterministic Estimation of Typhoon-Induced Surges and Inundation on Korean Coastal Regions (국내 연안 태풍 해일의 결정론적 추정 및 침수 영역 예측)

  • Ku, Hyeyun;Maeng, Jun Ho;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This research mainly focuses on examining the applicability of the deterministic model SLOSH (Sea, Lake and Overland Surges from Hurricanes) on Seas covering South Korea. Also, a simple bathtub approach which estimates coastal inundation area is validated as a first step of estimating effects of sea-level rise on the coastal cities of South Korea according to climate change. Firstly, the typhoon-induced surges are obtained from the model SLOSH by adopting historical typhoons MAEMI (0314) and BOLAVEN (1215). The results are compared to observational, typhoon-induced surge heights at several tidal stations. The coastal inundation area is estimated by comparing the maximum envelop of waves (MEOW) and the elevation of coastal land. It reproduces well the inundation area. It can be seen that this research gained applicability for estimating further potential coastal inundation with climate changes.

Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data (범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발)

  • Lee, Seung-Soo;Lee, Gi-Ha;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

Comparison of Flooding Patterns according to the Location of the Collapse of Dam body (저수지 댐 붕괴 지점에 따른 침수 양상 비교)

  • Danxun, Liu;Lee, Gil-Ha
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.461-470
    • /
    • 2022
  • When an agricultural soil dam collapses, the extent of inundation and the rate of diffusion vary depending on where the collapse occurs in the dam body. In this study, a dam collapse scenario was established and a two-dimensional numerical model FLO-2D was used to closely examine the inundation pattern of the downstream residential area according to the dam collapse point. The results were presented as a flood risk map showing the changes and patterns of the extent of inundation spread. The flood level and the time to reach the maximum water level vary depending on the point of collapse, and the inundation of the downstream area proceeds rapidly in the order of the midpoint, left point, and right point collapse. In the left collapse point, the submergence appeared about 0.5 hour slower than the middle point, and the right collapse point appeared about 1 hour slower than the middle point. Since the relative damage pattern is different depending on the dam collapse point, insurance and disaster countermeasures will have to be established differently.

Inundation Analysis in Urban Area Considering of Head Loss Coefficients at Surcharged Manholes (과부하 맨홀의 손실계수를 고려한 도시지역 침수해석)

  • Lee, Won;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • In general, XP-SWMM regards manholes as nodes, so it can not consider local head loss in surcharged manhole depending on shape and size of the manhole. That might be a reason why XP-SWMM underestimates inundated-area compared with reality. Therefore, it is necessary to study how we put the local head loss in surcharged manhole in order to simulate storm drain system with XP-SWMM. In this study, average head loss coefficients at circular and square manhole were estimated as 0.61 and 0.68 respectively through hydraulic experiments with various discharges. The estimated average head loss coefficients were put into XP-SWMM as inflow and outflow energy loss of nodes to simulate inundation area of Gunja basin. Simulated results show that not only overflow discharge amount but inundated-area increased considering the head loss coefficients. Also, inundation area with considering head loss coefficients was matched as much as 58% on real inundation area. That was more than simulated results without considering head loss coefficients as much as 18 %. Considering energy loss in surcharged manholes increases an accuracy of simulation. Therefore, the averaged head loss coefficients of this study could be used to simulate storm drain system. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

A Study of Inundation Mapping by Imagination Tsunami Simulation (가상 지진해일 시뮬레이션을 통한 최대범람지도 제작에 관한 연구)

  • Um, Dae-Yong;Yoon, Hee-Cheon;Park, Joon-Kyu;Kim, Min-Gyu
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.261-264
    • /
    • 2007
  • In this study, I wished to forecast damage district by tsunami's occurrence. For this, analyzed tsunami that can happen in our country's neighborhood sea area using past data, and established tsunami's scenario by imagination with analysis result. I created 3D topographical model about study area and analyzed inundation area by achieving simulation by scenario. Also, result of simulation does overlay with digital map and manufactured imagination inundation map. This study result may offer as basic data for operation of tsunami's forecast/alarm system and making of disaster prevention policy.

  • PDF

Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges (교량에 집적된 유송잡물의 배수영향에 의한 홍수피해 분석)

  • Kim, Soo-Jun;Chung, Jae-Hak;Lee, Jong-Seol;Kim, Ji-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • The bridge crossing river is the one of the major factors causing backwater level rising. Furthermore, the bridges in the mountainous areas increase the flood damage in the upstream of the bridge due to the blockage by debris. In this research, the effects of debris to the magnitude of flood damage in the study river basin were simulated by using HEC-RAS and HEC-GeoRAS models. With assumption that the backwater caused by debris blocking the space between bridge piers is the only factor causing inundation, the unsteady flow simulation was carried out with various case studies. The potential inundation area with the overflow locations and volumes could be estimated as the results of simulation. However, the simulation results also reveal the limitations of inaccurate estimation of inundation area and depth. To overcome these hindrances, DEM and satellite images were applied to the simulation. By readjusting the inundation area using digital maps and satellite images and calibrating overflow volume and depth using DEM, the accuracy of simulation could be increased resulting more accurate flood damage estimation.

Flood Inundation Analysis in a Low-lying Rural Area using HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 농촌 저지대 침수해석)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Song, In-Hong;Hwang, Soon-Ho;Park, Ji-Hoon;Song, Jung-Hun;Kim, Ji-Hye
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • The objective of this study is to analyze the flood inundation in a low-lying rural area. The study watershed selected for this study includes the Il-Pae and Ahn-Gok watersheds. It is located in the Namyangju, Korea and encompasses $3.64km^2$. A major flood event that occurred in July 2011 was chosen as the case for the flood inundation analysis. The Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) and River Analysis System (HEC-RAS) were used to simulate flood runoff and water surface elevation at each cross-section, respectively. The watershed topographic, soil, and land use data were processed using the GIS (Geographic Information System) tool for the models. The contribution to the total flood volume was estimated based on the results simulated by HEC-HMS and HEC-RAS. The results showed that the overflow discharge from the Il-Pae stream constituted 80% of the total flood volume. The contributions of rainfall falling directly on the inundation area and overflow discharge from the Ahn-Gok stream were 15 % and 5 %, respectively. The simulation results in different levee scenarios for the Ahn-Gok stream were also compared. The results indicated that the levee could reduce the flood volume a little bit.

Mapping Inundation Areas by Flash Flood and Developing Rainfall Standards for Evacuation in Urban Settings (GIS를 이용한 도시지역 돌발홍수 침수예상지도 작성 및 대피강우기준 개발)

  • Shin, Sang-Young;Yeo, Chang-Geon;Baek, Chang-Hyun;Kim, Yoon-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.71-80
    • /
    • 2005
  • As local flash flood exceeding planned capacity occurs frequently, localized preparedness and response to flood inundation are increasingly important. Using XP-SWMM model and GIS techniques, this study analyzes inundation areas by local flash flood and develops rainfall standards for evacuation with the case of Sadang-Cheon area, a local stream and its nearby highly populated watershed in the southern part of metropolitan Seoul, Flood inundation areas overflowed from drainage systems are analyzed and mapped by amount of rainfall that is derived from reference levels of stream flow. Rainfall standards for evacuation are comprised of 'watch' (40mm/hr) in preparing for near-future inundation and 'evacuation' (65mm/hr) in responding to realized inundation. The methods suggested by this case study may be applied to other urban areas for sound flood prevention policy measures and thus risk minimization.

  • PDF