• Title/Summary/Keyword: Intuitionistic

Search Result 263, Processing Time 0.024 seconds

Group Decision Making Using Intuitionistic Hesitant Fuzzy Sets

  • Beg, Ismat;Rashid, Tabasam
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.181-187
    • /
    • 2014
  • Dealing with uncertainty is always a challenging problem. Intuitionistic fuzzy sets was presented to manage situations in which experts have some membership and non-membership value to assess an alternative. Hesitant fuzzy sets was used to handle such situations in which experts hesitate between several possible membership values to assess an alternative. In this paper, the concept of intuitionistic hesitant fuzzy set is introduced to provide computational basis to manage the situations in which experts assess an alternative in possible membership values and non-membership values. Distance measure is defined between any two intuitionistic hesitant fuzzy elements. Fuzzy technique for order preference by similarity to ideal solution is developed for intuitionistic hesitant fuzzy set to solve multi-criteria decision making problem in group decision environment. An example is given to illustrate this technique.

On entropy for intuitionistic fuzzy sets applying the Euclidean distance

  • Hong, Dug-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.13-16
    • /
    • 2002
  • Recently, Szmidt and Kacprzyk[Fuzzy Sets and Systems 118(2001) 467-477] Proposed a non-probabilistic-type entropy measure for intuitionistic fuzzy sets. It is a result of a geometric interpretation of intuitionistic fuzzy sets and uses a ratio of distances between them. They showed that the proposed measure can be defined in terms of the ratio of intuitionistic fuzzy cardinalities: of F∩F$\^$c/ and F∪F$\^$c/, while applying the Hamming distances. In this note, while applying the Euclidean distances, it is also shown that the proposed measure can be defined in terms of the ratio of some function of intuitionistic fuzzy cardinalities: of F∩F$\^$c/ and F∪F$\^$c/.

Intuitionistic Fuzzy Semigroups

  • Hur, Kul;Jang, Su-Youn;Lim, Pyung-Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.207-219
    • /
    • 2008
  • We give some properties of intuitionistc fuzzy left, right, and two-sided ideals and bi-ideals of a semigroup. And we characterize a regular semigroup, a semigroup that is a lattice of left(right) simple semigroups, a semigroup that is a semilattice of left(right) groups and a semigroup that is a semilattice of groups in terms of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals.

ON BETA PRODUCT OF HESITANCY FUZZY GRAPHS AND INTUITIONISTIC HESITANCY FUZZY GRAPHS

  • Sunil M.P.;J. Suresh Kumar
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.485-494
    • /
    • 2023
  • The degree of hesitancy of a vertex in a hesitancy fuzzy graph depends on the degree of membership and non-membership of the vertex. We define a new class of hesitancy fuzzy graph, the intuitionistic hesitancy fuzzy graph in which the degree of hesitancy of a vertex is independent of the degree of its membership and non-membership. We introduce the idea of β-product of a pair of hesitancy fuzzy graphs and intuitionistic hesitancy fuzzy graphs and prove certain results based on this product.

INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar;Khan, Madad;Hussain, Saqib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.311-324
    • /
    • 2010
  • We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

ROUGH SET THEORY APPLIED TO INTUITIONISTIC FUZZY IDEALS IN RINGS

  • Jun, Young-Bae;Park, Chul-Hwan;Song, Seok-Zun
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.551-562
    • /
    • 2007
  • This paper concerns a relationship between rough sets, intuitionistic fuzzy sets and ring theory. We consider a ring as a universal set and we assume that the knowledge about objects is restricted by an intuitionistic fuzzy ideal. We apply the notion of intutionistic fuzzy ideal of a ring for definitions of the lower and upper approximations in a ring. Some properties of the lower and upper approximations are investigated.

STABILITY AND HYPERSTABILITY OF MULTI-ADDITIVE-CUBIC MAPPINGS IN INTUITIONISTIC FUZZY NORMED SPACES

  • Ramzanpour, Elahe;Bodaghi, Abasalt;Gilani, Alireza
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.391-409
    • /
    • 2020
  • In the current paper, the intuitionistic fuzzy normed space version of Hyers-Ulam stability for multi-additive, multi-cubic and multi-additive-cubic mappings by using a fixed point method are studied. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes in intuitionistic fuzzy normed space are presented.

On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • In this paper, we give definitions of compatible mappings of type(${\gamma}$) in intuitionistic fuzzy metric space and obtain common fixed point theorem under the conditions of weak compatible mappings of type(${\gamma}$) in complete intuitionistic fuzzy metric space. Our research generalize, extend and improve the results given by Sedghi et.al.[12].

INTUITIONISTIC FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

  • Hong, Sung-Min;Kim, Kyung-Ho;Jun, Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.261-272
    • /
    • 2001
  • The intuitionistic fuzzification of a subalgebra in a BCK/BCI-algebra is considered, and related results are investigated. The notion of equivalence relations on the family of all intuitionistic fuzzy subalgebras of a BCK/BCI-algebra is introduced, and then some properties are discussed.