• Title/Summary/Keyword: Intrinsic stress

Search Result 189, Processing Time 0.027 seconds

In-situ Measurements of the Stress in $TiO_2$ Thin Films ($TiO_2$ 박막의 두께에 따른 실시간 스트레스 측정에 관한 연구)

  • 한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.260-265
    • /
    • 1993
  • An in-situ stress measurement interferometer is constructed and used to measure the intrinsic stress in Ti$O_2$ thin films during their growth by ion-assisted deposition. It is found that the stress increases with the momentum transferred by the ion beam to the growing film and is fairly well agreed with Windischmann's model. The variation of the stress with thickness is qualitatively explained in terms of the balance between the compressive stress produced by the ion beam and the surface diffusion determined by the surface temperature.

  • PDF

THE EFFECT OF INTERNAL STRESS ON THE SOFT MAGNETIC PROPERTIES OF PERMALLOY THIN FILMS

  • Kim, Hyun-Tae;Kim, Sang-Joo;Han, Suk-Hee;Kim, Hi-Jung;Kang, Il-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.533-537
    • /
    • 1995
  • The stress in Permalloy thin films fabricated by rf magnetron sputtering on the Si (100) substrates has been investigated with various deposition parameters such as the film thickness, argon pressure, and rf power. The internal stress changes from compressive to tensile with higher input power and argon pressure. The cause of stress variations with these deposition parameters is discussed in terms of thermal and/or intrinsic stress changes. Low coercive force is obtained from Permalloy thin films at a condition of low compressive stress.

  • PDF

Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics (손상역학을 이용한 섬유강화 복합재료의 피로해석)

  • Lim Dong-Min;Yoon Ihn-Soo;Kang Ki-Weon;Kim Jung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.

Estimation of Residual Stress in ReBCO Coated Conductor Tapes Using Various Methods

  • Dizon, John Ryan C.;Shin, Hyung-Seop;Ko, Rock-Kil;Ha, Dong-Woo;Oh, Sang-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.9-12
    • /
    • 2008
  • The residual stress induced in the superconducting layer was estimated using analytical approach coupled with electro-mechanical test results and XRD measurements. The residual stress measured based on the $I_{c}/I_{c0}$-strain degradation behavior showed similar value with the measured residual stress using XRD. The calculated residual stress based on the thermal analysis showed the lowest value. This could be explained by the additional intrinsic residual stresses induced in the superconducting film during deposition.

Study on rheological characterization of Gellan gum Produced by Pseudomonas elodea -Comparative Studies on Rheological Characterization of Gellan gum and Agar- (Pseudomonas elodea에 의해서 생산된 Gellan gum과 Agar의 rheology 특성 비교연구)

  • 권혜숙;구성자
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1988
  • The polysaccharide produced by pseudomonas elodea, Gellan gum, was rheologically characterized, compared with agar. Rheological properties were determined from the change in the value of intrinsic viscosity with the pH and salt concentration. At the range of pH 2∼ll and salt 0∼0.16M KC1, the intrinsic viscosity of Gellan gum ranged from 8.8 to 21.2dl/g and agar ranged from 1.97 to 11.46d1/g. In the absence of salt, the intrinsic viscosity of Gellan gum increased as the pH of solution increased up to neutral pH then decreased slightly at alkaline pH, whearas the intrinsic viscosity of agar increased as the pH of solution increased up to pH 9 then decreased slightly. Intrinsic viscosity of Gellan gum and agar decreased with an increase in salt concentration. The chain stiffness parameter for the Gellan gum was 0.033. The overlap parameter of Gellan gum and agar were 0.047g/dl and 0.087g/dl, respectively. Gellan gum and agar were shear rate dependent or pseudoplastic. The yield stress and proportionality constant of Gellan gum increased slightly as the concentration increase, on the other hand, the shear index of Gellan gum showed a maximum at 0.75g/dl and gradually decreased as the concentration increase. The apparent viscosity of Gellan gum and agar decreased as the temperature increase. A lower concentration of the divalent cations calcium and magnesium is required to obtain maximum gel strength than for the monovalent cations sodium and potassium.

  • PDF

DC magnetron sputtering을 이용한 Hf 첨가된 zinc oxide기반의 Thin film transistor의 전기적 특성

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Kim, Gyeong-Taek;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.110-110
    • /
    • 2010
  • 현재 박막 트랜지스터는 비정질 실리콘 기반의 개발이 주를 이루고 있으며, 이 비정질 실리콘은 성막공정이 간단하고 대면적에 용이하지만 전기적인 특성이 우수하지 않기 때문에 디스플레이의 적용에 어려움을 겪고 있다. 이에 따라 poly-Si을 이용한 박막 트랜지스터의 연구가 진행되고 있는데, 이는 공정온도가 높고, 대면적에의 응용이 어렵다. 따라서 앞으로 저온 공정이 가능하며 대면적 응용이 용이한 박막 트랜지스터의 연구가 필수적이다. 한편 최근 박막 트랜지스터의 채널층으로 사용되는 물질에는 oxide 기반의 ZnO, SnO2, In2O3 등이 주로 사용되고 있고, 보다 적합한 채널층을 찾기 위한 연구가 많이 진행되어 왔다. 최근 Hosono 연구팀에서 IGZO를 채널층으로 사용하여 high mobility, 우수한 on/off ratio의 특성을 가진 소자 제작에 성공함으로써 이를 시작으로 IGZO의 연구 또한 세계적으로 활발한 연구가 이루어지고 있다. 특히, ZnO는 wide band gap (3.37eV)을 가지고 있어 적외선 및 가시광선의 투과율이 좋고, 전기 전도성과 플라즈마에 대한 내구성이 우수하며, 낮은 온도에서도 성막이 가능하다는 특징을 가지고 있다. 그러나 intrinsic ZnO 박막은 bias stress 같은 외부 환경이 변했을 경우 전기적인 성질의 변화를 가져올 뿐만 아니라 고온에서의 공정이 불안정하다는 요인을 가지고 있다. ZnO의 전기적인 특성을 개선하기 위해 본 연구에서는 hafnium을 doping한 ZnO을 channel layer로 소자를 제작하고 전기적 특성을 평가하였다. 이를 위해 DC magnetron sputtering을 이용하여 ZnO 기반의 박막 트랜지스터를 제작하였다. Staggered bottom gate 구조로 ITO 물질을 전극으로 사용하였으며, 제작된 소자는 semiconductor analyzer를 이용하여 출력특성과 전이 특성을 평가하였으며, ZnO channel layer 증착시 hafnium이 도핑 되는 양을 조절하여 소자를 제작한 후 intrinsic ZnO의 소자 특성과 비교 분석하였다. 그 결과 hafnium을 doping 시킨 소자의 field effect mobility가 $6.42cm^2/Vs$에서 $3.59cm^2/Vs$로 낮아졌지만, subthreshold swing 측면에서는 1.464V/decade에서 0.581V/decade로 intrinsic ZnO 보다 좋은 특성을 나타냄을 알 수 있었다. 그리고 intrinsic ZnO의 경우 외부환경에 대한 안정성 문제가 대두되고 있는데, hafnium을 도핑한 ZnO의 경우 temperature, bias temperature stability, 경시변화 등의 다양한 조건에서의 안정성이 확보된다면 intrinsic ZnO 박막트랜지스터의 문제점을 해결할 수 있는 물질로 될 것이라고 기대된다.

  • PDF

Analysis of Size Effect of Nano Scale Machining Based on Normal Stress and Indentation Theories (수직응력과 압입이론에 기반한 나노스케일 기계가공에서의 크기효과 분석)

  • Jeon, Eun-chae;Lee, Yun-Hee;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2018
  • Recently nano meter size pattern (sub-micro scale) can be machined mechanically using a diamond tool. Many studies have found a 'size effect' which referred to a specific cutting energy increase with the decrease in the uncut chip thickness at micro scale machining. A new analysis method was suggested in order to observe 'size effect' in nano scale machining and to verify the cause of the 'size effect' in this study. The diamond tool was indented to a vertical depth of 1,000nm depth in order to simplify the stress state and the normal force was measured continuously. The tip rounding was measured quantitatively by AFM. Based on the measurements and theoretical analysis, it was verified that the main cause of the 'size effect' in nano scale machining is geometrically necessary dislocations, one of the intrinsic material characteristics. st before tool failure.

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Non-biopolymeric Solutions (II)

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.332-335
    • /
    • 1987
  • This paper is a continuation of our previous $paper,^1$ and deals with Eq.(1) (see the text), which was theoretically derived in the $paper,^1$$ [{\eta}]^f\; and\; [{\eta}]^0$ is the intrinsic viscosity at stress f and f = O, respectively. Equation (1) predicts how $[{{\eta}}]^f / [{\eta}]^0$ changes with stress f, relaxation time ${\beta}_2$ of flow unit 2 and a constant $c_2$ related with the elasticity of molecular spring of flow unit 2. In this paper, Eq.(1) is applied to a biopolymer, e.g., poly (${\gamma}$-benzyl L-glutamate), and nonbiopolymers, e.g., polyisobutylene, polystyrene, polydimethylsiloxane and cellulose triacetate. It was found that the $c_2$ factor is zero for non-biopolymers while $c_2{\neq}0$ for biopolymers as found $previously.^1$ Because of the non-Newtonian nature of the solutions, the ratio $[{{\eta}}]^f / [{\eta}]^0$ drops from its unity with increasing f. We found that the smaller the ${\beta}_2,$ the larger the $f_c$ at which the viscosity ratio drops from the unity, vice versa.

The Influence of the Enlistment-Motivation on the South Korean Military Life (입대 동기가 육군 병사와 해병대원의 군 생활과 미래 인식에 미치는 영향)

  • Kyung Jae Song ;Min Han ;Joonsung Bae ;Sung Yeol Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.16 no.4
    • /
    • pp.469-485
    • /
    • 2010
  • The present research investigated the influence of the enlistment motivation on an image of military organization, soldier's stress, a confidence of social life after discharge from military service and military life satisfaction in Korean military service. Participants of this research were 257 soldiers (121 conscript Army soldiers and 136 voluntary Marines) from 2 companies in the army and 2 companies in the Marine Corps located in South Korea. Results of this study showed that 1) conscript Army group(M=2.39, SD=.71)had a significantly higher score than voluntary Marines group(M=1.95, SD=.63)in extrinsic enlistment motivation. On the contrary, Marines group(M=4.16, SD=.76) had a significantly higher score than Army group(M=3.62, SD=.87) in intrinsic enlistment motivation. 2) Enlistment by intrinsic motivation has positive influence on the military life. Result of Regression analysis showed that enlistment by intrinsic motivation significantly predicted a military life satisfaction(𝛽=.402, t=6.424, p<.001), a confidence of social life(𝛽=.528, t=9.836, p<.001), and an image of military organization(𝛽=.494, t=8.486, p<.001). On the other hand, enlistment by extrinsic motivation has negative influence on the military life. Result of Regression analysis showed that enlistment by extrinsic motivation significantly predicted the soldier's stress in military life(𝛽=.415, t=6.642, p<.001), and no confidence of social life(𝛽=-.177, t=-3.306, p<.001). These results suggest that Korean military needs to focus on enhancing intrinsic enlistment motivation of young men of conscription age before conscription by educating, and advertising etc. And also, we discuss that Korean military needs to consider how to boost intrinsic motivation of military life.

  • PDF

The Effect of Deposition Rate on In-Situ Intrinsic Stress Behavior in Cu and Ag Thin Films (증착 속도 변화에 따른 구리와 은 박막의 실시간 고유응력 거동)

  • Ryu, Sang;Lee, Kyungchun;Ki, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.283-288
    • /
    • 2008
  • We observed the in-situ stress behavior of Cu and Ag thin films during deposition using a thermal evaporation method. Multi-beam curvature measurement system was used to monitor the evolution of in-situ stress in Cu and Ag thin films on 100 Si(100) substrates. The measured curvature was converted to film stress using Stoney formula. To investigate the effects of the deposition rates on the stress evolution in Cu and Ag thin films, Cu and Ag films were deposited at rates ranging from 0.1 to $3.0{\AA}/s$ for Cu and from 0.5 to $4.0{\AA}/s$ for Ag. Both Cu and Ag films showed a unique three stress stages, such as 'initial compressive', 'a tensile maximum' and followed by 'incremental compressive' stress. For both Cu and Ag films, there is no remarkable effect of deposition rate on the thickness and average stress at the tensile maximum. There is, however, a definite decrease in the incremental compressive stress with increasing deposition rate.