• 제목/요약/키워드: Intracellular chloride

검색결과 79건 처리시간 0.023초

The Binding of Human CLIC1 with SEDL and Its Characterization in vitro

  • Park, Jeong-Soon;Lee, Kyoung-Mi;Jeong, Mi-Suk;Jin, Gyoung-Ean;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.574-580
    • /
    • 2007
  • Full-length chloride intracellular channel protein 1 (CLIC1) is a member of the family of proteins related to bovine chloride intracellular channel p64. Mutations in the SEDL gene cause spondyloepiphyseal dysplasia tarda (SEDT), a rare X-linked chondrodysplasia. The link between the intracellular chloride channels and SEDL is an important step toward understanding their functional interplay. In the present study, CLIC1 protein was subcloned into the pGEX-KG vector and overexpressed in XL-1 blue cells. We developed a large-scale expression system composed of glutathione S-transferase (GST) fused with a 240-amino-acid CLIC1 protein in Escherichia coli. The soluble CLIC1 protein was successfully purified to homogeneity, and its purity, identity, activity and conformation were determined using SDS-PAGE, MALDI-MS, biophotometer and circular dichroism spectroscopic studies. The binding of both CLIC1 and SEDL proteins in vitro was detected by BIAcore biosensor and fluorescence measurements.

심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할 (Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes)

  • 박춘옥;김양미;한재희;홍성근
    • 대한수의학회지
    • /
    • 제34권1호
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

[$Cl^-$-sensitive Component of $Ca^{2+}$-activated Tail Current in Rabbit Atrial Myocytes

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Kim, Woo-Gyeum;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 1992
  • We used the whole cell patch clamp technique to examine the ionic basis for the tail current after depolarizing pulse in single atrial myocytes of the rabbit. We recorded the tail currents during various repolarizations after short depolarizing pulse from a holding potential of -70 mV. The potassium currents were blocked by external 4-aminopyridine and replacement of internal potassium with cesium. The current was reversed to the outward direction above +10 mV. High concentrations of intracellular calcium buffer inhibited the activation of the current. Diltiazem and ryanodine blocked it too. These data suggest that the current is activated by intracellular calcium released from sarcoplasmic reticulumn. When the internal chloride concentration was increased, the inward tail current was increased. The current was partially blocked by the anion transport blocker niflumic acid. The current voltage curve of the niflumic acid sensitive current component shows outward rectification and is well fitted to the current voltage curve of the theoretically predicted chloride current calculated from the constant field equation. The currents recorded in rabbit atrial myocytes, with the method showing isolated outward Na Ca exchange current in ventricular cells of the guinea pig, suggested that chloride conductance could be activated with the activation of Na/ca exchange current. From the above results it is concluded that a chloride sensitive component which is activated by intracellular calcium contributes to tail currents in rabbit atrial cells.

  • PDF

ClC Chloride Channels in Gram-Negative Bacteria and Its Role in the Acid Resistance Systems

  • Minjeong Kim;Nakjun Choi;Eunna Choi;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.857-863
    • /
    • 2023
  • Pathogenic bacteria that colonize the human intestinal tract have evolved strategies to overcome acidic conditions when they pass through the gastrointestinal tract. Amino acid-mediated acid resistance systems are effective survival strategies in a stomach that is full of amino acid substrate. The amino acid antiporter, amino acid decarboxylase, and ClC chloride antiporter are all engaged in these systems, and each one plays a role in protecting against or adapting to the acidic environment. The ClC chloride antiporter, a member of the ClC channel family, eliminates negatively charged intracellular chloride ions to avoid inner membrane hyperpolarization as an electrical shunt of the acid resistance system. In this review, we will discuss the structure and function of the prokaryotic ClC chloride antiporter of amino acid-mediated acid resistance system.

Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma guilliermondii KX008616

  • Alamri, Saad A.M.;Hashem, Mohamed;Nafady, Nivien A.;Sayed, Mahmoud A.;Alshehri, Ali M.;El-Shaboury, Gamal A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.917-930
    • /
    • 2018
  • Intracellular synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Meyerozyma guilliermondii KX008616 is reported under aerobic and anaerobic conditions for the first time. The biogenic synthesis of Ag-NP types has been proposed as an easy and cost-effective alternative for various biomedical applications. The interaction of nanoparticles with ethanol production was mentioned. The purified biogenic Ag/AgCl-nanoparticles were characterized by different spectroscopic and microscopic approaches. The purified nanoparticles exhibited a surface plasmon resonance band at 419 and 415 nm, confirming the formation of Ag/AgCl-NPs under aerobic and anaerobic conditions, respectively. The planes of the cubic crystalline phase of the Ag/AgCl-NPs were confirmed by X-ray diffraction. Fourier-transform infrared spectra showed the interactions between the yeast cell constituents and silver ions to form the biogenic Ag/AgCl-NPs. The intracellular Ag/AgCl-NPs synthesized under aerobic condition were homogenous and spherical in shape, with an approximate particle size of 2.5-30nm as denoted by the transmission electron microscopy (TEM). The reaction mixture was optimized by varying reaction parameters, including temperature and pH. Analysis of ultrathin sections of yeast cells by TEM indicated that the biogenic nanoparticles were formed as clusters, known as nanoaggregates, in the cytoplasm or in the inner and outer regions of the cell wall. The study recommends using the biomass of yeast that is used in industrial or fermentation purposes to produce Ag/AgCl-NPs as associated by-products to maximize benefit and to reduce the production cost.

유기수은의 신경독성에 대한 셀레늄의 보상작용 (Interaction of Sodium Selenite on Neurotoxicity Induced by Methylmercuric Chloride)

  • 박정수;이효민;정용;신동천;노재훈;문영한
    • Journal of Preventive Medicine and Public Health
    • /
    • 제25권1호
    • /
    • pp.13-25
    • /
    • 1992
  • This study was conducted to investigate the mechanism of protective effect by sodium selenite in methylmercuric chloride neurotoxicity, increasing intracellular $Ca^{2+}$concentration of the neuron. Methylmercuric chloride of 3mg/kg of body weight was administered simultaneously with sodium selenite of 5mg/kg and pretreatment of sodium selenite via intraperitoneal injection to rats. Also, effect of methylmercuric chloride($25{\mu}M,\;50{\mu}M,\;100{\mu}M$) and sodium selenite($200{\mu}M$) on free intrasynaptosomal $Ca^{2+}$ concentration were studied using the fluorescent $Ca^{2+}$ indicator fura -2 in vitro. After the treatment, at 6, 24, and 48 hours later, mercury in the cerebral cortex, liver and kidney tissues, succlnic dehydrogenase activities, adenosin-5'-triphosphate concentration, acetylcholinesterase activities, and intracellular $Ca^{2+}$ concentration in the cerebral cortex were determined in vivo. Cerebral synaptosomes of rats were incubated with methylmercuric chloride and sodium selenite in Hepes buffer for 10 minutes and free intrasynaptosomal $Ca^{2+}$ concentration were measured with fura-2 in vitro. The results were summarized as follows ; 1. The combined administration of $CH_3HgCl$ and $Na_2SeO_3$ and pretreatment of $Na_2SeO_3$ according to time significantly more increased in the cerebral cortex and decreased in the liver, kidney mercury concentrations compared to the administration of $CH_3HgCl$ only. 2. The combined administration of $CH_3HgCl$ and $Na_2SeO_3$ and pretreatment of $Na_2SeO_3$ increased more succinic dehydrogenase and acetylcholinesterase activities compared to the administration of $CH_3HgCl$ only. Particularly pretreatment of $Na_2SeO_3$ significantly more compared to the administration of $CH_3HgCl$ only. The concentration of adenosine-5'-triphosphate in $Na_2SeO_3$ treatment groups revealed a favourable effect compared to the administration of $CH_3HgCl$ only. 3. Intracellular $Ca^{2+}$ concentration in administration of $CH_3HgCl$ only was increased significantly more than control group in all test hours but was increased significantly more at 48 hours only after treatment in combined administration of $CH_3HgCl$ and $Na_2SeO_3$ and pretreatment of $Na_2SeO_3$ according to time interval more decreased significantly intracellular $Ca^{2+}$ concentration compared to the administration of $CH_3HgCl$ only. 4. Free intrasynaptosomal $Ca^{2+}$ concentration in the combined administration of $CH_3HgCl$ and $Na_2SeO_3$ was decreased ($24%{\sim}40%$) significantly more than the administration of $CH_3HgCl$ only. From the above results, the specific dosage of $Na_2SeO_3$ decreased increment of intracellular $Ca^{2+}$ concentration induced by administration of $CH_3HgCl$. These findings suggest the protective mechanism of $Na_2SeO_3$ on the neurotoxicity of $CH_3HgCl$.

  • PDF

[$Ca^{2+}-activated\;Cl^-$ Current in Gastric Antral Myocytes

  • Lee, Moo-Yeol;Bang, Hyo-Weon;Uhm, Dae-Yong;Rhee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.143-150
    • /
    • 1994
  • The whole-cell mode of the patch clamp technique was used to study $Ca^{2+}-activated\;Cl^-\;current$ $(I_{Cl_{Ca}})$ in gastric antral myocytes. Extracellular application of caffeine evoked $Ca^{2+}-activated\;current$. In order to isolate the chloride current from background current, all known systems were blocked with specific blockers. The current-voltage relationship of caffeine-induced current showed outward rectification and it reversed at around $E_{Cl^-}$. The shift of reversal potential upon the alteration of external and internal chloride concentrations was well fitted with results which were calculated by the Nernst equation. Extracellular addition of N-phenylanthranilic acid and niflumic acid which are known anion channel blockers abolished the caffeine induced current. Intracellular application of a high concentration of EGTA also abolished this current. Application of c-AMP, c-GMP, heparin, or $AIF^-_4$ made no remarkable changes to this current. Sodium replacement with the impermeable cation N-methylglucamine or with $Cd^{2+}$ rarely affected this current. From the above results it is suggested that the caffeine induced current was a $Cl^-$ current and it was activated by intracellular $Ca^{2+}$.

  • PDF

Ethanol Extract of Polygalae Radix Augments Pentobarbital-Induced Sleeping Behaviors through $GABA_Aergic$ Systems

  • Lee, Chung-Il;Lee, Mi Kyeong;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.179-185
    • /
    • 2013
  • Polygalae radix (PR) has traditionally been used as a sedative and anti-stress agent in oriental countries for a long time. PR which contains many ingredients is especially rich in saponins. This study was performed to investigate whether ethanol extract of PR enhances pentobarbital-induced sleep behaviors. In addition, possible mechanisms also were investigated. PR inhibited locomotor activity in mice. PR increased sleep rate and sleep time by concomitant administration with sub-hypnotic dose of pentobarbital (28 mg/kg). PR prolonged total sleeping time, and shortened sleep latency induced by pentobarbital (42 mg/kg). In addition, PR increased intracellular chloride concentration in primary cultured neuronal cells. The expression level of glutamic acid decarboxylase (GAD) were increased, and ${\gamma}$-aminobutyric acid $(GABA)_A$ receptors subunits were modulated by PR, especially increasing ${\gamma}$-subunit expression. In conclusion, PR augments penobarbital-induced sleep behaviors through activation of $GABA_A$ receptors and chloride channel complex.

복합한약제제가 Pentobarbital에 의해 유도된 수면시간에 미치는 영향 (Effects of the Combined-Preparation of Crude Drugs on Pentobarbital-induced Sleeping Time)

  • 한영택;김대근;은재순
    • 동의생리병리학회지
    • /
    • 제27권6호
    • /
    • pp.759-763
    • /
    • 2013
  • This experiment was performed to investigate whether 50% ethanol extracts of the combined-preparation of Longanae Arilus, Chrysanthemi Flos, Zizyphi Fructus and Ginseng Radix alba (CPE) has hypnotic effects and/or enhances pentobarbital-induced sleeping time. Locomotor activity was evaluated using a ambulometer of tilting-type. The sedative-hypnotic effects were evaluated by measuring the sleeping onset time and sleeping time in pentobarbital-treated mice 30 min. after oral administration of CPE and muscimol. The intracellular $Cl^-$ concentration of cerebellar granule cells was estimated using $Cl^-$ sensitive fluorescence probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium (MQAE). CPE (150 mg/kg) decreased the locomotor activity, but CPE itself did not induce sleep. However, CPE reduced sleeping onset and prolonged sleeping time induced by pentobarbital (42 mg/kg). In addition, CPE (2 ${\mu}g/ml$) and pentobarbital (2.5 ${\mu}M$) itself did not affect on the chloride influx in primary cultured cerebellar granule cells, but the combination of CPE and pentobarbital (2.5 ${\mu}M$) increased the chloride influx onto the cells. In conclusion, it is suggested that CPE might augment pentobarbital-induced sleep through the increase of chloride influx.

세포막 활동전압에서 음양(陰陽)의 상호관계 (Interrelation of Yin and Yang in Action Potential of Cell Membrane)

  • 박선영;김호현
    • 동의생리병리학회지
    • /
    • 제27권5호
    • /
    • pp.563-569
    • /
    • 2013
  • This study was undertaken to apply the yin-yang theory in action potential. In order to apply the yin-yang theory in action potential, nature of yin and yang, interrelation of yin and yang and action potential in cell were reviewed. According to the yin-yang theory, inner cellular space corresponds to yin, but outer cellular space corresponds to yang. If we classify ions in intracellular fluid or extracellular fluid by nature of yin and yang, potassium(K+) corresponds to yang within yin(陰中之陽), protein(Pr-) corresponds to yin within yin(陰中之陰) in intracellular fluid, and sodium(Na+) corresponds to yang within yang(陽中之陽), chloride(Cl-) corresponds to yin within yang(陽中之陰) in extracellular fluid. Double donnan equilibrium and equilibrium potential were caused by intracellular anion(Pr-) and extracellular cation(Na+) are related with mutual rooting of yin and yang(陰陽互根) and opposition of yin and yang(陰陽對立). The influx and efflux of ion through cell membrane means waxing and waning of yin and yang(陰陽消長), the change of membrane potential means yin-yang conversion(陰陽轉化) during action potential.