• Title/Summary/Keyword: Intracellular $Ca^{2+}$$Ca^{2+}$ Influx and Release

Search Result 78, Processing Time 0.02 seconds

The Relationship of the L-type $Ca^{2+}$ Channel on the Depolarization-and Depletion of SR $Ca^{2+}$ -induced Smooth Muscle Contraction and Intracellular $Ca^{2+}$ Mobilization (탈분극과 근장그물 내 $Ca^{2+}$ 고갈-유도 평활근의 수축 및 세포 내 $Ca^{2+}$ 변동에 관여하는 L-형 $Ca^{2+}$ 통로의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.65-76
    • /
    • 2007
  • Purpose: It is generally accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic teticulum (SR) and from the extracellular space. The increased $[Ca^{2+}]^i$ can phosphorylate the 20,000 dalton myosin light chain $(MLC_{20})$ by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$MACK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and others, play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of depletion of SR $Ca^{2+}$ in mouse gastric smooth muscle strips is not still clear. Methods: To investigate the rotes of $Ca^{2+}$ influx and SR $Ca^{2+}$ release channel on gastric motility, isometric contraction and $[Ca^{2+}]_i$ were examined in mouse gastric smooth muscle strips. Results: High KCl, ryanodine, an activator of $Ca^{2+-}$induced $Ca^{2+}$ release channel, and cyclopiazonic acid (CPA), an inhibitor of SR $Ca^{2+-}$ATPase evoked a sustained increase in muscle contraction and $[Ca^{2+}]_i$. These increases induced by high KCl, ryanodine, and CPA were partially blocked by application of verapamil ($10{\mu}M$), a L-type $Ca^{2+}$ channel inhibitor. Additionally, in $Ca^{2+-}$free solution (1 mM EGTA), ryanodine and CPA had no effect contraction and $[Ca^{2+}]_i$ in fundic muscle strips. Conclusion: These results that extracellular $Ca^{2+}$ influx and depletion of SR trigger $Ca^{2+}$ influx through verapamil-sensitive $Ca^{2+}$ channel, and extracellular and SR $Ca^{2+}$ store may functionally involve in the subcellular $Ca^{2+}$ mobilization in mouse gastric muscle.

  • PDF

Mechanism of $Ca^{2+}$ Regulation in Osteoblast-like Cells (골아세포내 $Ca^{2+}$ 활성도의 조절기전)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.1 no.1
    • /
    • pp.25-41
    • /
    • 1999
  • Physiological activity of osteoblast including bone formation is known to be closely related to the increase of intracellular $Ca^{2+}$ activity($[Ca^{2+}]_i$) in osteoblast. $Ca^{2+}$ is an important intracellular messenger in diverse cellular functions, and regulation of its level is mediated by the transmembrane $Ca^{2+}$ movement via $Ca^{2+}$ channels, $Na^+-Ca^{2+}$ exchange, and by intracellular $Ca^{2+}$ movement through the intracellular stores. The purpose of this study is to investigate how the intracellular $Ca^{2+}$ is regulated in osteoblast-like cells(OLCs) by measuring $Ca^{2+}$ activity with cell imaging technique. OLCs were isolated from femur and tibia of neonatal rats, and cultured for 7 days. Cultured OLCs were loaded with a $Ca^{2+}$-sensitive fluorescent dye, Fura-2, and fluorescence images were monitored with a cooled CCD camera. The images were processed and analyzed with an image analyzing software. The results were as follows. (1) $[Ca^{2+}]_i$ of OLC decreased as the $Ca^{2+}$ concentration in the superfusing Tyrode solution was lowered. When $Na^+$ concentration in the superfusing solution was decreased, $[Ca^{2+}]_i$ increased.. These suggest that $Ca^{2+}$ flux occurs via the $Na^+-Ca^{2+}$ exchange mechanism. (2) When $Na^+$ in the superfusing solution was removed. a transient $Ca^{2+}$, increase($Ca^{2+}$ spike) was occasionally observed. However, $Ca^{2+}$ spike was not observed after adding 1 ${\mu}M$ thapsigargin. This implies that the generation of $Ca^{2+}$ spike is mediated by the release of $Ca^{2+}$ from endoplasmic reticulum(ER). (3) As the $Ca^{2+}$ concentration in the superfusing solution was raised, the frequency of 0mM $Na^+$-induced $Ca^{2+}$ spike increased, suggesting that $Ca^{2+}$-induced $Ca^{2+}$ release(CICR) mechanism exists. (4) After $[Ca^{2+}]_i$ was decreased with the superfusion of $Ca^{2+}$-free solution containing thapsigargin, the recovery of $[Ca^{2+}]_i$ with reperfusion of 2.5mM $Ca^{2+}$ solution transiently exceeded the control level, suggesting that the depletion of $Ca^{2+}$ in ER induces $Ca^{2+}$ influx from extracellular medium via store-operated $Ca^{2+}$ influx(SOCI) mechanism. (5) $[Ca^{2+}]_i$ was not affected by the superfusion of 25mM $K^+$ Tyrode solution. These results suggest that intracellular $Ca^{2+}$ activity in osteoblast is regulated by transmembrane $Ca^{2+}$ flux via $Na^+-Ca^{2+}$ exchange, $Ca^{2+}$ release from the internal store (ER) via $Ca^{2+}$-induced $Ca^{2+}$ release, and store-operated $Ca^{2+}$ influx across the cell membrane.

  • PDF

Depression of $Ca^{2+}$ Influx in Complement C5a-stimulated Neutrophils by Calmodulin Inhibitors

  • Ham, Dong-Suk;Kim, Hyun-Ho;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.109-117
    • /
    • 1998
  • Role of $Ca^{2+}$/calmodulin complex in intracellular $Ca^{2+}$ mobilization in neutrophils has not been clearly elucidated. In this study, effects of chlorpromazine, trifluoperazine and imipramine on the intracellular $Ca^{2+}$ mobilization, including $Ca^{2+}$ influx, in C5a-activated neutrophils were investigated. Complement C5a- stimulated superoxide production and myeloperoxidase release in neutrophils were inhibited by chlorpromazine, trifluoperazine and imipramine, except no effect of imipramine on myeloperoxidase release. A C5a-elicited elevation of [$Ca^{2+}$]i in neutrophils was inhibited by chlopromazine, trifluoperazine, imipramine, staurosporine, genistein, EGTA, and verapamil but not affected by pertussis toxin. The intracellular $Ca^{2+}$ release in C5a-activated neutrophils was not affected by chlorpromazine and imipramine. Chlorpromazine and imipramine inhibited $Mn^{2+}$ influx by C5a-activated neutrophils. Thapsigargin-evoked $Ca^{2+}$ entry was inhibited by chlorpromazine, trifluoperazine, imipramine, genistein, EGTA and verapamil, while the effect of staurosporine was not detected. The results suggest that $Ca^{2+}$/calmodulin complex is involved in the activation process of neutrophils. The depressive action of calmodulin inhibitors on the elevation of cytosolic $Ca^{2+}$ level in C5a-activated neutrophils appears to be accomplished by inhibition of $Ca^{2+}$ influx from the extracellular medium.

  • PDF

Analysis of Vasopressin-Induced $Ca^{2+}$ Increase in Rat Hepatocytes

  • Kim, Hyun-Sook;Fumikazu-Okajima;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • To analyze vasopressin-induced $Ca^{2+}$ increase in liver cells, rat hepatocytes were isolated and attached to collagen-coated cover slips. Using fura-2, a $Ca^{2+}$-sensing dye, changes in intracellular $Ca^{2+}$ concentration by vasopressin were monitored. Results in this communication suggested that vasopressin-induced $Ca^{2+}$ increase were composed of both $Ca^{2+}$ release from internal $Ca^{2+}$ stores and influx from the plasma membrane. The $Ca^{2+}$ influx consisted of two distinguishable components. One was dependent on the presence of vasopressin and the other was not. SK&F96365 blocked vasopressin-induced $Ca^{2+}$ influx in a dose-dependent manner. Vasopressin-induced $Ca^{2+}$ release from internal stores diminished in a primary culture of hepatocytes according to the culture time. However, changes in vasopressin-induced $Ca^{2+}$ influx across the plasma membrane differed from changes in the $Ca^{2+}$ release from internal stores, suggesting two separate signalings from receptor activation to internal stores and to the plasma membrane.

Effects of C18 Fatty Acids on Intracellular $Ca^{2+}$ Mobilization and Histamine Release in RBL-2H3 Cells

  • Kim, Myung Chul;Kim, Min Gyu;Jo, Young Soo;Song, Ho Sun;Eom, Tae In;Sim, Sang Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and ${\alpha}$-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular $Ca^{2+}$ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular $Ca^{2+}$ mobilization, whereas linoleic acid and ${\alpha}$-linolenic acid gradually increased this mobilization. In the absence of extracellular $Ca^{2+}$, stearic acid ($100{\mu}M$) did not cause any increase of intracellular $Ca^{2+}$ mobilization. Both linoleic acid and ${\alpha}$-linolenic acid increased intracellular $Ca^{2+}$ mobilization, but the increase was smaller than that in the presence of extracellular $Ca^{2+}$. These results suggest that C18 fatty acid-induced intracellular $Ca^{2+}$ mobilization is mainly dependent on extracellular $Ca^{2+}$ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular $Ca^{2+}$ mobilization, but did not affect both linoleic acid- and ${\alpha}$-linolenic acid-induced intracellular $Ca^{2+}$ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and ${\alpha}$-linolenic acid on intracellular $Ca^{2+}$ mobilization may differ. Linoleic acid and ${\alpha}$-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ${\omega}$-6)-induced intracellular $Ca^{2+}$ mobilization and histamine release were more prominent than ${\alpha}$-linolenic acid (C18:3: ${\omega}$-3). These data support the view that the intake of more ${\alpha}$-linolenic acid than linoleic acid is useful in preventing inflammation.

Regulation of the Contraction Induced by Emptying of Intracellular $Ca^{2+}$ Stores in Cat Gastric Smooth Muscle

  • Baek, Hye-Jung;Sim, Sang-Soo;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2000
  • To investigate the mechanism of smooth muscle contraction induced by emptying of intracellular $Ca^{2+}$ stores, we measured isometric contraction and $^{45}Ca^{2+}$ influx. $CaCl_2$ increased $Ca^{2+}$ store emptying- induced contraction in dose-dependent manner, but phospholipase C activity was not affected by the $Ca^{2+}$ store emptying-induced contraction. The contraction was inhibited by voltage-dependent $Ca^{2+}$ channel antagonists dose dependently, but not by TMB-8 (intracellular $Ca^{2+}$ release blocker). Both PKC inhibitors (H-7 and staurosporine) and tyrosine kinase inhibitors (genistein and methyl 2,5-dihydroxycinnamic acid) significantly inhibited the contraction, but calmodulin antagonists (W-7 and trifluoperazine) had no inhibitory effect on the contraction. The combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were greater than that of each one alone. In $Ca^{2+}$ store-emptied condition, $^{45}Ca^{2+}$ influx was significantly inhibited by verapamil, H-7 or genistein but not by trifluoperazine. However combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were not observed. Therefore, this kinase pathway may modulate the sensitivity of contractile protein. These results suggest that contraction induced by emptying of intracellular $Ca^{2+}$ stores was mediated by influx of extracellular $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channel, also protein kinase C and/or tyrosine kinase pathway modulates the $Ca^{2+}$ sensitivity of contractile protein.

  • PDF

Increase of Intracellular $Ca^{2+}$ Concentration by Vibrio Vulnificus Cytolysin in Rat Platelets; Triggering Mechanism of Platelet Cytolysis

  • Park, Jin-Bong;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • Vibrio vulnificus cytolysin caused platelet cytolysis and increased intracellular calcium concentration $([Ca^{2+}]_i)$ of rat platelets in a concentration-dependent manner. In the presence of V. vulnificus cytolysin (3 HU/ml), lactate dehydrogenase (LDH) activity was increased from $1.3{\pm}0.4%$ of control to $64.3{\pm}3.4%$ in platelet suspension buffer. In $Ca^{2+}-free$ platelet suspension buffer, however, V. vulnificus cytolysin did not induce $[Ca^{2+}]_i$ increase and LDH release. Addition of EGTA (2 mM) to suspension buffer after the initial $Ca^{2+}$ influx reversed $[Ca^{2+}]_i$ to the control level. However, a $Ca^{2+}$ channel blocker verapamil $(20\;{\mu}M)$ or mefenamic acid $(20\;{\mu}M)$ did not inhibit V. vulnificus cytolysin-induced $[Ca^{2+}]_i$ increase and LDH release. Divalent cations such as $Co^{2+},\;Cd^{2+}\;or\;Mn^{2+}$ (2 mM each) also did not alter V. vulnificus cytolysin-induced $[Ca^{2+}]_i$ increase and LDH release. V. vulnificus cytolysin (3 HU/ml)-induced calcium influx was completely blocked by lanthanum (2 mM). Lanthanum (2 mM) also completely blocked V. vulnificus cytolysin (3 HU/ml)-induced LDH release. Osmotic protectants such as, raffinose, sucrose or PEG600 (50 mM each) did not inhibit the lytic activity of V. vulnificus cytolysin. In conclusion, lanthanum sensitive $Ca^{2+}$ influx plays a significant role in Vibrio vulnificus cytolysin-induced platelet cytolysis and thrombocytopenia in V. vulnificus infection.

  • PDF

Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.305-313
    • /
    • 2004
  • The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

Regulatory Action of Protein Tyrosine Kinase in Intracellular Calcium Mobilization in C5a-stimulated Neutrophils (C5a에 의해 자극된 호중구에서 세포내 칼슘동원에 대한 Protein Tyrosine Kinase의 조절작용)

  • Choi, Won-Tae;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.417-424
    • /
    • 1996
  • The present study was done to examine the involvement of protein kinase C and protein tyrosine kinase in intracellular $Ca^{2+}$ mobilization in C5a-stimulated neutrophils. Although protein kinase C inhibitors, staurosporine and H-7 inhibited intracellular $Ca^{2+}$ release in C5a-stimulated neutrophils, they did not affect $Ca^{2+}$ influx across the plasma membrane and elevation of $[Ca^{2+}]_i$ C5a-induced intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx were inhibited by protein tyrosine kinase inhibitors, genistein and methyl-2,5-dihydroxycinnamate. ADP-evoked elevation of $[Ca^{2+}]_i$ was inhibited by genistein and methyl-2,5-dihydroxycinnamate but was not affectd by staurosporine and H-7. Genistein and methyl-2,5-dihydroxycinnamate reduced the store-regulated $Ca^{2+}$ influx in thapsigargin-treated neutrophils, while the effect of staurosporine and H-7 was not detected. When neutrophils were preincubated wih phorbol 12-myristate 13-acetate, the stimulatory effect of C5a on the elevation of $[Ca^{2+}]_i$ was reduced. These results suggest that protein tyrosine kinase may be involved in control of intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx across the plasma membrane in C5a-activated neutrophils.

  • PDF

Vasodilatory Effects of Samhwangsasim-tang on Vascular Smooth Muscle (삼황사심탕의 혈관이완 효능과 기전)

  • Kim Jong Bong;Kwon Oh Kui;Son Chang Woo;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1382-1386
    • /
    • 2004
  • This study was performed for the investigation of vasodilatory efficacy and its underlying mechanisms of Samhwangsasim-tang(SST), herbal remedy. SST relaxed vascular strips precontracted with phenylephrine or KCI(51 mM), but the magnitude of relaxation was greater in phenylephrine(PE) induced contraction. The relaxation effects of SST was endothelium-independent. L-NAME, iNOS inhibitor, and methyl en blue(MB), cGMP inhibitor, did not attenuate the relaxation responses of SST. In the absence of extracellular Ca2+, pre-incubation of the aortic rings with SST significantly reduced the contraction by PE, suggesting that the relaxant action of the SST includes inhibition of Ca/sup 2+/ influx and release of Ca/sup 2+/ from intracellular stores (SR). In addition, the cell death was induced by SST in human aortic smooth muscle cells but not that of human umbilical vein endothelial cells. We conclude that in rat thoracic aorta, SST may induce in part vasodilation through inhibition of Ca/sup 2+/ influx and release of Ca/sup 2+/ from intracellular stores.