Browse > Article

Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells  

Lee, Yong-Soo (College of Pharmacy, Duksung Women′s University)
Publication Information
Archives of Pharmacal Research / v.27, no.3, 2004 , pp. 305-313 More about this Journal
Abstract
The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.
Keywords
Diazoxide; Apoptosis; HepG2 cells; $K^{+}$ channels; Intracellular $Ca^{2+}$;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Bortner, C. D., Hughes, F. M., Jr, and Cidlowski, J. A., A primary role for $K^{+}$ and $Na^{+}$efflux in the activation of apoptosis. J. Biol. Chem., 272, 32436-32442 (1997)   DOI   ScienceOn
2 Cohen, J. J., and Duke, R. C., Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol., 132, 38-42 (1984)
3 Edwards, G., and Weston, A. H., The role of potassium channels in excitable cells. Diabetes Res. Clin. Pract., 8 Suppl, S57-66 (1995)
4 Fasolato, C., Hoth, M., Matthews, G., and Penner, R., $Ca^{2+}$ and $Mn^{2+}$ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc. Natl. Acad. Sci. USA, 90, 3068-3072 (1993)   DOI   ScienceOn
5 Hille, B., Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer Associates, Inc., Sunderland, MA, pp. 115-139 and 472-503 (1992)
6 Hughes, F. M., Jr, Bortner, C. D., Purdy, G. D., and Cidlowski, J. A., Intracellular$K^{+}$suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem., 272,30567-30576 (1997)   DOI   ScienceOn
7 Kamesaki, H., Mechanisms involved in chemotherapy-induced apoptosis and theirimplications in cancer chemotherapy. Int. J. Hematol., 68, 29-43 (1998)   DOI   PUBMED   ScienceOn
8 Liu, S. I., Chi, C. W., Lui, W. Y., Mok, K. T., Wu, C. W., and Wu, S. N., Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim. Biophys. Acta, 1368, 256-266(1998)   DOI   ScienceOn
9 McConkey, D. J. and Orrenius, S., The role of calcium in the regulation ofapoptosis. J. Leukoc. Biol., 59, 775-783 (1996)   PUBMED
10 Minta, A. and Tsien, R. Y., Fluorescent indicators for cytosolic sodium. J. Biol. Chem., 264, 19449-19457 (1989)   PUBMED
11 Rouzaire-Dubois, B. and Dubois, J. M., $K^{+}$ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J. Physiol (Lond)., 510, 93-102 (1998)   DOI   ScienceOn
12 Squier, M. K. T., Miller, A. C. K., Malkinson, A. M., and Cohen, J. J., Calpain activation in apoptosis. J. Cell Physiol., 159,229-237 (1994)   DOI   ScienceOn
13 Teshima, Y., Akao, M., Li, R. A., Chong, T. H., Baumgartner, W. A., Johnston, M. V., and Marban, E., Mitochondrial ATP-sensitive potassium channel activation protectscerebellar granule neurons from apoptosis induced by oxidative stress. Stroke, 34, 1796-1802 (2003)   DOI   ScienceOn
14 Duchen, M. R., Roles of mitochondria in health and disease. Diabetes, 53, S96-102 (2004)   DOI   PUBMED   ScienceOn
15 Cameron, J. S., Lhuillier, L., Subramony, P., and Dryer, S. E., Developmental regulation of neuronal $K^{+}$ channels by target-derived TGF in vivo and in vitro. Neuron, 21, 1045-1053 (1998)   DOI   ScienceOn
16 Fesus, L., Thomazy, V., and Falus, A., Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett., 224, 104-108 (1987)   DOI   ScienceOn
17 Kim, J. A., Kang, Y. S., Lee, S. H., and Lee, Y. S., Inhibitors of $Na^{+}$/$Ca^{2+}$ exchanger prevent oxidant-induced intracellular $Ca^{2+}$ increase andapoptosis in a human hepatoma cell line. Free Radic. Res., 33, 267-277 (2000)   DOI   ScienceOn
18 Malhi, H., Irani, A. N., Rajvanshi, P., Suadicani, S. O., Spray, D. C., McDonald, T. V., andGupta, S., KATP channels regulate mitogenically-induced proliferationin primary hepatocytes and human liver cell lines: implications for liver growth control and potential therapeutic targeting. J. Biol. Chem., 275, 26050-26057 (2000)   DOI   ScienceOn
19 Xu, B., Wilson, B. A., and Lu, L., Induction of human myeloblastic ML-1 cell $G_{1}$ arrest by suppression of $K^{+}$ channel activity. Am. J. Physiol., 271, C2037-2044 (1996)
20 Bonnefoy-Berard, N., Genestier, L., Flacher, M., and Revillard, J. P, The phosphoprotein phosphatase calcineurin controls calcium-dependent apoptosis in B cell lines. Eur. J. Immunol., 24, 325-329 (1994)   DOI   ScienceOn
21 Jordan, J., Galindo, M. F., and Miller, R. J., Role of calpain and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. J. Neurochem., 68, 1612-1621 (1997)   DOI   PUBMED   ScienceOn
22 Nilius, B. and Wohlrab, W., Potassium channels and regulation of proliferation of human melanoma cells. J. Physiol (Lond)., 445, 537-548 (1992)   PUBMED
23 Challinor-Rogers, J. L., and McPherson, G. A., Potassium channel openers and other regulators of $K_{ATP}$channels. Clin. Exp. Pharmacol. Physiol., 21, 583-597 (1994)   DOI   ScienceOn
24 Shibasaki, F., Kondo, E., Akagi, E., and McKeon, F., Suppresion of signaling through NF-AT by interactions between calcineurin and BCL-2. Nature, 386, 728-731 (1997)   DOI   ScienceOn
25 Grynkiewicz, G., Poene, M., and Tsien, R. Y., A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440-3450(1985)   PUBMED
26 Avdonin, V., Kasuya, J., Ciorba, M. A., Kaplan, B., Hoshi, T., and Iverson, L., Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated $K^{+}$ channels. Proc. Natl. Acad. Sci. U. S. A., 95, 11703-11708 (1998)   DOI
27 Bombeli, T., Karsan, A., Tait, J. F., and Harlan, J. M., Apoptotic vascular endothelial cells become procoagulant. Blood, 89, 2429-2442 (1997)   PUBMED
28 Distelhorst, C. W, and Dubyak, G., Role of calcium in glucocorticosteroid-induced apoptosis of thymocytes and lymphoma cells: resurrection of old theories by new findings. Blood, 91, 731-734 (1998)   PUBMED
29 Kim, J. A., Kang, Y. S., Lee, S. H., Lee, E. H., and Lee, Y. S., Involvement of $Ca^{2+}$ influx in the mechanism of tamoxifeninduced apoptosis in HepG2 human hepatoblastoma cells. Cancer Lett., 147, 115-123 (1999)   DOI   PUBMED   ScienceOn
30 Shirihai, O., Attali, B., Dagan, D., and Merchav, S., Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. J. Cell Physiol., 177, 197-205 (1998)   DOI   ScienceOn
31 Aguilar-Bryan, L., Clement, J. P. 4th, Gonzalez, G., Kunjilwar, K., Babenko, A., and Bryan, J., Toward understanding the assembly and structure of $K_{ATP}$channels. Physiol. Rev., 78, 227-245 (1998)   PUBMED
32 Chen, W . H., Yeh, T. H., Tsai, M. C., Chen, D. S., and Wang, T. H., Characterization of $Ca^{2+}$- and voltage-dependent nonselective cation channels in human HepG2 cells. J. Formos. Med. Assoc., 96, 503-510 (1997)
33 Kamleiter, M., Hanemann, C. O., Kluwe, L., Rosenbaum, C., Wosch, S., Mautner, V. F., Muller, H. W., and Grafe, P., Voltage-dependent membrane currents of cultured human neurofibromatosis type 2 Schwann cells. Glia, 24, 313-322 (1998)   DOI   ScienceOn
34 Adams, J. M., and Cory, S.. The BcI-2 protein family: arbiters of cell survival. Science, 281, 1322-1326 (1998)   DOI   PUBMED   ScienceOn
35 Kidd, V. J., Proteolytic activities that mediate apoptosis. Annu. Rev. Physiol., 60,533-573 (1998)   DOI   PUBMED   ScienceOn
36 Chin, L. S., Park, C. C., Zitnay, K. M., Sinha, M., DiPatri, A. J. Jr., Perillan, P., and Simard, J. M., 4-Aminopyridine causes apoptosis and blocks an outward rectifier $K^{+}$ channel in malignant astrocytoma cell lines. J. Neurosci. Res., 48, 122-127 (1997)   DOI   ScienceOn
37 Stanley, R. G., Advances in second messenger and phosphoprotein research. Academic Press, Orlando, FL 33, 107-127 (1999)
38 Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 184, 39-51 (1995)   DOI   ScienceOn
39 Wyllie, A. H., Morris, R. G., Smith, A. L., and Dunlop, D., Chromatin cleavage inapoptosis: Association with condensed chromatin morphology and dependence ormacromolecular synthesis. J. Pathol., 142, 67-67 (1984)   DOI   PUBMED
40 Zhang, H., Inazu, M., Weir, B., Buchanan, M., and Daniel, E., Cyclopiazonic acid stimulates $Ca^{2+}$ influx through non-specific cation channels in endothelial cells. Eur. J. Pharmacol., 251, 119-125 (1994)   DOI   PUBMED   ScienceOn
41 Woodfork, K. A., Wonderlin, W. F., Peterson, V. A., and Strobl, J., Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J. Cell Physiol., 162, 163-171 (1995)   DOI   ScienceOn
42 Harman, A. W., and Maxwell, M. J., An evaluation of the role of calcium in cell injury. Annu. Rev. Pharmacol. Toxicol., 35, 129-144 (1995)   DOI   ScienceOn
43 Gogelein, H., Dahlem, D., Englert, H. C., and Lang, H. J., Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett., 268, 79-82 (1990)   DOI   ScienceOn
44 Squier, M. K. T. and Cohen, J. J., Calpain, an upstream regulator of thymocyte apoptosis. J. Immunol., 158, 3690-3697 (1997)
45 Crompton, N. E., Programmed cellular response in radiation oncology. Acta Oncol., 37 Suppl 11, 1-4 (1998)   DOI
46 Kornblau, S. M., The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies. Leukemia, 12 Suppl 1, S41-46 (1998)   PUBMED
47 Deutsch, C., Potassium channels: basic function and therapeutic aspects. Prog. Clin. Biol. Res., 334, 251-271 (1990)
48 Wang, S., Melkoumian, Z., Woodfork, K. A., Cather, C., Davidson, A. G., Wonderlin, W.F., and Strobl, J. S., Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J. Cell Physiol., 176, 456-464 (1998)   DOI   ScienceOn
49 Wondergem, R., Cregan, M., Strickler, L., Miller, R., and Suttles, J., Membrane potassium channels and human bladder tumor cells: II. Growth properties. J. Membr. Biol., 161, 257-262 (1998)   DOI   ScienceOn
50 Barbiero, G., Duranti, F., Bonelli, G., Amenta, J. S., and Baccino, F. M., Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Exp. Cell Res., 217, 410-418 (1995)   DOI   ScienceOn
51 Lepple-Wienhues, A., Berweck, S., Bohmig, M., Leo, C. P., Meyling, B., Garbe, C., and Wiederholt, M., $K^{+}$ channels and the intracellular calcium signal in human melanoma cell proliferation. J. Membr. BioI., 151,149-157 (1996)   DOI   ScienceOn
52 Melino, G., Annicchiarico-Petruzzeli, M., Piredda, L., Candi, E., Gentile, V., Davies, P. J., and Piacentini, M., Tissue transglutaminase and apoptosis: Sense and antisense transfection studies with human neuroblastoma cells. Mol. Cell Biol., 14, 6584-6596 (1994)   PUBMED
53 Kastan, M. B., Canman, C. E., and Leonard, C. J., P53, cell cycle control and apoptosis:implications for cancer. Cancer Metastasis Rev., 14, 3-15 (1995)   DOI   ScienceOn
54 Schulte-Hermann, R., Bursch, W., Low-Baselli, A., Wagner, A., and Grasl-Kraupp, B., Apoptosis in the liver and its role in hepatocarcinogenesis. Cell Biol. Toxicol., 13, 339-348 (1997)   DOI   ScienceOn
55 Rouzaire-Dubois, B. and Dubois, J. M., A quantitative analysis of the role of $K^{+}$channels in mitogenesis of neuroblastoma cells. Cell Signal., 3, 333-339 (1991)   DOI   ScienceOn
56 Yu, S. P, Farhangrazi, Z. S., Ying, H. S., Yeh, C. H., and Choi D. W., Enhancement of outward potassium current may participate in ${\beta}$-amyloid peptide-induced cortical neuronal death. Neurobiol. Dis., 5, 81-88 (1998)   DOI   ScienceOn