• Title/Summary/Keyword: Intra particle diffusion model

Search Result 11, Processing Time 0.025 seconds

Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite (HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

Removal of 2,4-Dinitrophenol from an Aqueous Solution by Wood-Based Activated Carbon (목질계 활성탄을 이용한 수중의 2,4-Dinitrophenol 흡착 제거)

  • Ju, Chang-Sik;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.609-619
    • /
    • 2017
  • The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.

Adsorption Characteristics of Dimetridazole Antibiotics on Activated Carbon Prepared from Agricultural Waste Citrus Peel (폐감귤박 활성탄을 이용한 항생제 Dimetridazole의 흡착특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.798-806
    • /
    • 2017
  • A activated carbon (WCAC, waste citrus activated carbon) prepared from an agricultural waste citrus peel material generated in Jeju was utilized for the removal of dimetridazole (DMZ) antibiotics in aqueous solution. The adsorption of DMZ on WCAC was investigated with the change of various parameters such as contact time, dosage of WCAC, particle size of WCAC, temperature, pH, and DMZ concentration. The DMZ adsorption capacity increased with increasing temperature and decreasing particle size. Also it was decreased at less than pH 4 but sustained almost constantly at pH 4 or greater. Isotherm parameters were determined from the Langmuir, Freundlich, Redlich-Peterson and Duinin-Radushkevich (D-R) isotherm models. The isotherm data were best described by the Redlich-Peterson isotherm model. And the adsorption kinetics can be successfully fitted to the pseudo-second-order kinetic model. The results of the intra-particle diffusion model suggested that film diffusion and intra-particle diffusion were occurred simultaneously during the adsorption process. Meanwhile, the thermodynamic parameters indicated that the adsorption reaction of DMZ on WCAC was an endothermic and spontaneous process. The experimental results showed that WCAC is a promising and cheap adsorbent for the removal of DMZ antibiotics.

Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

  • Tahermansouri, Hasan;Beheshti, Marzieh
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3391-3398
    • /
    • 2013
  • The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

Removal of Cs and Sr Ions by Absorbent Immobilized Zeolite with PVA (제올라이트를 PVA로 고정화한 흡착제에 의한 Cs과 Sr 이온 제거)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.450-457
    • /
    • 2015
  • In this research a adsorbent, PVA-Zeolite bead, was prepared by immobilizing zeolite with PVA. The results of XRD and SEM analysis showed that the prepared PVA-Zeolite beads had porous structure and the zeolite particles were in mobilized within the internal matrix of the beads. The adsorption properties of Sr ion and Cs ion with the adsorbent were studied by different parameters such as effect of pH, adsorption rate, and adsorption isotherm. The adsorption of Sr ion and Cs ion reached equilibrium after 540 minutes. The adsorption kinetics of both ions by the PVA-Zeolite beads were fitted well by the pseudo-second-order model more than pseudo-first-order model. The equilibrium data fitted well with Langmuir isotherm model. The maximum adsorption capacities of Sr ion and Cs ion calculated from Langmuir isotherm model were 52.08 mg/g and 58.14 mg/g, respectively. The external mass transfer step was very fast compared to the intra-particle diffusion step in the adsorption process of Cs ion and Sr ion by the PVA-Zeolite beads. This result implied that the rate controlling step was the intra-particle diffusion step.

Adsorption kinetic and mechanistic view of aqueous ferric ion onto bio-natural rice grains

  • Al-Anber, Mohammed A.
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.73-88
    • /
    • 2017
  • Adsorption kinetics of aqueous ferric ion ($Fe^{3+}$) onto bio-natural rice grains (BRG) have been studied in a batch system. The influence of contact time (0-180 minutes), the dosage of BRG adsorbent (10, 20, 40, and $60gL^{-1}$), and ambient temperature (27, 37, 47, and $57^{\circ}C$) for the adsorption system have been reported. The equilibrium time achieved after 20 minutes of adsorption contact time. The maximum removal of ferric ion is 99% by using $60gL^{-1}$ of BRG, $T=37^{\circ}C$, and $50mgL^{-1}$ ferric ion solution. Adsorption kinetic and diffusion models, such as pseudo-first order, pseudo-second order, and Weber-Morris intra-particle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto BRG surface. The sorption data results are fitted by Lagergren pseudo-second order model ($R^2=1.0$). The kinetic parameters, rate constant, and sorption capacities have been calculated. The new information in this study suggests that BRG could adsorb ferric ion from water physiosorption during the first 5 minutes. Afterward, the electrostatic interaction between ferric ion and BGR-surface could take place as a very weak chemisorptions process. Thus, there is no significant change could be noticed in the FTIR spectra after adsorption. I recommend producing BGR as a bio-natural filtering material for removing the ferric ion from water.

Moment Analysis (MA) of Lysozyme in Cation Exchange High Performance Liquid Chromatography (HPLC) (양이온교환 고성능액체크로마토그래피에서 라이소자임의 모멘트 분석)

  • Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.487-493
    • /
    • 2016
  • The moment analysis of lysozyme was implemented using chromatograms that were obtained from weak cation exchange column in high performance liquid chromatography system. Three elution sodium phosphate buffers containing 1.0, 0.75, 0.5M sodium chloride were used. Experiments were conducted by varying flow rate, elution sodium chloride concentration, and lysozyme solute concentration. The general rate (GR) model was employed to calculate the first moment and the second moment. By plotting $L/u_0$ vs. $({\mu}_1-t_0)/(1-{\varepsilon}_e)(1-{\varepsilon}_i)$] equilibrium constants (K) were obtained from first moment analysis. Intra-particle diffusivity was obtained from theoretical plate number data. Based on the results of moment analysis, van Deemter plots were drawn in order to investigate the contributions of $H_{ax}$, $H_f$, and $H_d$ to total Height Equivalent to a Theoretical Plate (HETP, $H_{total}$). The effect of intra-particle diffusion ($H_d$) was the most dominant factor contributing to HETP while external mass transfer ($H_f$) was negligible factor.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation (역상 크로마토그래피에서 모멘트 방법과 van Deemter 식을 이용한 고리형 아데노신 일인산의 분리특성 연구)

  • Lee, Il Song;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.723-729
    • /
    • 2015
  • The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatography (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second central moment. Three important coefficients for moment analysis, which are molecular diffusivity ($D_m$), external mass transfer coefficient ($k_f$), and intra-particle diffusivity ($D_e$), were estimated by the Wilke-Chang equation, Wilson-Geankoplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentration. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were compared each other to effect $H_{ax}$, $H_f$, and $H_d$ on height equivalent to a theoretical plate (HETP, $H_{total}$). The value of intraparticle diffusion ($H_d$) was the primary factor which makes for HETP whereas external mass transfer ($H_f$) was disregardable factor.