• Title/Summary/Keyword: Intestinal smooth muscle relaxation

Search Result 9, Processing Time 0.023 seconds

Involvement of Spontaneously Formed Cyclic Nucleotides in Cat Gastric Muscle Relaxation

  • Sim, Sang-Soo;Baek, Hye-Jung;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.275-282
    • /
    • 1999
  • Muscle strips and muscle cells from cat stomach were used to investigate whether spontaneously formed cyclic nucleotides were involved in the inhibition of gastric smooth muscle contraction. A phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), increased the levels of both cyclic GMP (cGMP) and cyclic AMP (cAMP) in resting state cells, while decreasing acetylcholine-induced muscle contraction. Under the influence of IBMX, SQ22536, an adenylyl cyclase inhibitor and methylene blue, a guanylyl cyclase inhibitor completely blocked increases in cAMP and cGMP respectively, without any effect on contraction. However, the combination of SQ22536 and methylene blue completely blocked increases in both cAMP and cGMP levels and stimulated contractions markedly even in the presence of IBMX. Muscle contraction inhibitors such as isoprenaline, vasoactive intestinal polypeptide and sodium nitroprusside also appeared to increase cyclic nucleotide levels which decreased contraction. Which nucleotide increased the most was dependent on the agonist used. Therefore, irrespective of the cyclic nucleotide class, the spontaneous formation of cyclic nucleotides should be considered in evaluating the mechanism of gastric smooth muscle relaxation.

  • PDF

The Eeffect of Sodium Nitroprusside on Muscle Tension in Guinea-pig Ileum (기니 픽 장관 평활근에서 Sodium Nitroprusside가 장력에 미치는 영향)

  • Kwon, Seong-Chun;Kim, Si-Yeon;Kim, Eun-Ju;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.797-808
    • /
    • 1997
  • Nitric oxide (NO) has been 3mown as a mediator of nonadrenergic, noncholinergic inhibitory neurotransmitter in intestinal smooth muscles. It has been suggested that NO donor such as sodium nitroprusside (SNP) produces relaxation of smooth muscle via activation of guanylate cyclase and elevation of cGMP levels. We have therefore investigated the effects of NO, using SNP, on muscle tension in the longitudinal smooth muscle of guinea-pig ileum. The possible role of cGMP was also investigated as well as the involvement of $K^+$ channel on SNP-induced inhibitory effect. The results are summarized as follows; high KCI-or CCh-activated contractions were inhibited by SNP in a concentration-dependent manner. 8-Br-cGMP also showed a similar effect in that of SNP TEA (1 mM) significantly reduced the SNP-induced inhibitory effect. SNP-induced effect was forther reduced by the presence of 10 mM TEA. On the other hand, 4-AP (0.1 mM), glibenclamide $(10\;{\mu}M)$ and apinain $(0.1\;{\mu}M)$ showed little effects on SNP-induced relaxation. Zaprinast significantly potentiated the SNP-induced inhibitory effect in all ranges. ODQ also significantly decreased the SNP-induced inhibitory effect. Pretreatment with CPA $(10\;{\mu}M)$ slightly reduced the SNP-induced inhibitory effect. From the above results, both effect mediated by NO and cGMP might be responsible for the activation of $Ca^{2+}$-activated $K^+$ channel by SNP in guinea-rig ileum. And this $K^+$ channel activation by SNP also contributes to the SNP-induced membrane hyperpolarization and relaxation.

  • PDF

Pharmacological Studies on Melilotus officinalis Extract (Melilotus officinalis 엑기스의 약리학적(藥理學的) 연구(硏究))

  • Hong, N.D.;Won, D.H.;Kim, N.J.
    • Korean Journal of Pharmacognosy
    • /
    • v.14 no.2
    • /
    • pp.51-59
    • /
    • 1983
  • Experimental studies were made with Melilotus officinalis extract which was extracted from flowers and leaves of Melilotus officinalis Dsr. (Leguminosae). In this paper, acute toxicity, analgesic action, prolongation of hypnosis time by induced pentobarbital-Nain mice, antiinflammatory effect in rats and effects on isolated intestines of mice and rats were studied, The result was as follows; 1. Very low toxicity in mice. 2. Analgesic action was recognized markedly in mice. 3. Prolongation of hypnosis time induced by pentobarbital-Na in mice was shown. 4. Relaxing action was shown on the isolated ileum in mice and antagonistic action was seen on $BaCl_2-induced$ contraction of the ileum that the relaxing effect of the intestinal smooth muscle was recognized. 5.Antiinflammatory effect was shown markedly in mice. 6.Hypotensive and vaso-dilating actions due to the vascular smooth muscle relaxation were noted in rabbits.

  • PDF

Non-Adrenergic Non-Cholinergic Responses of Gu mea- Pig Tracheal Smooth Muscle (기니피그 기도 평활근의 비아드레날린성 비꼴린성 반응에 관한 연구)

  • Jo, Eun-Yong;Choe, Hyeong-Ho;Jeon, Je-Yeol
    • Journal of Chest Surgery
    • /
    • v.29 no.5
    • /
    • pp.487-494
    • /
    • 1996
  • The neurogenic responses of tracheal smooth muscles to electrical field stimulation (EFS) is biphasic, consisting firstly of cholinergic contraction followed by a slow and sustained relaxation. It is well known that a sustained relaxation involves the inhibitory non-adrenergic non-cholinergic systems. This study was done to Investigate the relaxing agents and their action mechanisms by use of an organ bath with plati- ilum . The tracheal smooth muscle relaxation due to EFS was suppressed by L-NAME, the WO (Nitric Oxide) synthase inhibitor, and these effects were reversed by L-arginine, the precursor of NO. Also, L-WAME (HG-nitro-L-arginine methyl ester) increased the basal tension. Nitroprusside, the NO-donor, suppressed the tracheal basal tension greatly. Methylene blue, the inhibitor of guanylate cyclase, decreased EFS-induced relaxations and increa ed basal tension. Forskolin and isoprenaline, which are activators of adenylate cyclase, suppressed tracheal basal tension in the same way as nitroprusside. TEA (tetraethylammonium), the non-specific K'channel blocker, and apamin, the Ca"-activated K'channel blocker, increased tracheal basal tension and EFS-induced relaxations. Our results indicate that Pr3 Is released upon stimulation of the NANC (Won Adrenergic Won Cholinergic) nerves in guinea-pig tracheal smooth muscle and that the release of NO related with the K+ channel, as well as the release of other inhibitory agents< e. g.)VIP (Vasoactive Intestinal Polypeptide), PHI (Peptide Histidine Isoleusine) > mediated via CAMP (cyclic Adenosine Monophosphate) may be Involved In sustained relaxation.

  • PDF

The Effect of Acupuncture on the Intestinal Smooth Muscle Dysfunction Caused by Enteric Bacterial Infection in Weaning Piglet (돼지의 세균성 위장관 질환에 따른 평활근 기능 이상에 대한 침술의 효과)

  • Kim, Tae-wan;La, Jun-ho;Sung, Tae-sik;Kang, Jeong-woo;Nam, Tchi-chou;Choi, Min-cheol;Yoon, Yeo-sung;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.415-421
    • /
    • 2003
  • It is now generally accepted that acupuncture is effective in diarrhea caused by bacterial infection. However, its effect on the intestinal smooth muscle dysfunction is not clear. Therefore, we investigated the effect of acupuncture therapy at Jiao-chao (GV-1) on the intestinal muscle dysfunction in weaning piglets orally infected by Escherichia coli. The animals are divided into four groups; 1) E. coli + no-treatment, 2) E. coli + antibiotic, 3) E. coli + acupuncture, 4) normal group. In the three E. coli infected groups, low frequency electrical field stimulation (EFS, 1 Hz) provoked triphasic responses composed of initial relaxation followed by on-contraction and off-contraction. While in the normal group, EFS (1Hz) induced biphasic responses composed of relaxation during the stimulation and off-contraction. At the high frequency (16Hz) EFS, both on-contraction and off-contraction of the E. coli + antibiotic, E. coli + acupuncture and the normal group were larger than those of the E. coli + no-treatment group. In the non-adrenergic non-cholinergic (NANC) condition, only biphasic responses occurred to EFS in all experimental groups and the off-contraction of E. coli + antibiotic, E. coli + acupuncture and the normal group were larger than those of the E. coli + no-treatment group. The response to carbachol of those three groups was also significantly greater than that of the E. coli + no-treatment group. These results suggest that acupuncture is as effective as antibiotic in the dysfunction of colonic circular muscle caused by E. coli infection. The maintenance of contractile neuromuscular transmission seems to be involved in the mechanism of the acupuncture effects on diarrhea.

Modulation of Outward Potassium Currents by Nitric Oxide in Longitudinal Smooth Muscle Cells of Guinea-pig Ileum

  • Kwon, Seong-Chun;Rim, Se-Joong;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • To investigate the possible involvement of outward potassium ($K^+$) currents in nitric oxide-induced relaxation in intestinal smooth muscle, we used whole-cell patch clamp technique in freshly dispersed guinea-pig ileum longitudinal smooth muscle cells. When cells were held at -60 mV and depolarized from -40 mV to -50 mV in 10 mV increments, sustained outward $K^+$ currents were evoked. The outward $K^+$ currents were markedly increased by the addition of 10 ${\mu}M$ sodium nitroprusside (SNP). 10 ${\mu}M$ S-nitroso-N-acetylpenicillamine (SNAP) and 1 mM 8-Bromo-cyclic GMP (8-Br-cGMP) also showed a similar effect to that of SNP. 1 mM tetraethylammonium (TEA) significantly reduced depolarization-activated outward $K^+$ currents. SNP-enhanced outward $K^+$ currents were blocked by the application of TEA. High EGTA containing pipette solution (10 mM) reduced the control currents and also inhibited the SNP-enhanced outward $K^+$ currents. 5 mM 4-aminopyridine (4-AP) significantly reduced the control currents but showed no effect on SNP-enhanced outward $K^+$ currents. 0.3 ${\mu}M$ apamin and 10 ${\mu}M$ glibenclamide showed no effect on SNP-enhanced outward $K^+$ currents. 10 ${\mu}M$ 1H-[1,2,4]oxadiazolo [4,3-a]quinoxaline-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, significantly blocked SNP-enhanced $K^+$ currents. We conclude that NO donors activate the $Ca^{2+}-activated$ $K^+$ channels in guinea-pig ileal smooth muscle via activation of guanylate cyclase.

  • PDF

Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum (기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전)

  • Kim, Jong-Hoon;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

The Effect of Carbon Monoxide on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea Pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Chung, Seung-Soo;Kim, Yun-Suk;Nam, Taick-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.479-486
    • /
    • 2000
  • The aim of this study was to clarify the mechanism of the inhibitory action of carbon monoxide (CO) on contraction, by measuring cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. CO (10%) inhibited 40 mM KCl-induced contraction and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase (sGC) inhibitor. CO inhibited the 40 mM KCl-induced contraction without changing $[Ca^{2+}]_i.$ Cumulative addition of KCl induced a graded increase in $[Ca^{2+}]_i$ and muscle tension. In the presence of CO, cumulative addition of KCl induced smaller contraction than in the absence of CO. On the other hand, the increase in $[Ca^{2+}]_i$ induced by cumulative addition of KCl was only slightly decreased in the presence of CO, and the $[Ca^{2+}]_i-tension$ relationship shifted downwards. Using the patch clamp technique with a holding potential of -60 mV, we found that CO had little effect on the peak Ba currents $(I_{Ba})$ when voltage was stepped from -60 mV to 0 mV. In addition, CO showed no effect on the depolarization-activated outward $K^+$ currents in the all potential ranges. We conclude that CO inhibits smooth muscle contraction mainly by decreasing the $Ca^{2+}$ sensitivity of contractile elements via a cGMP-dependent pathway, not by involving L-type $Ca^{2+}$ and outward-potassium currents in guinea-pig ileum.

  • PDF

The Effect of NO Donor on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea-pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Park, Ki-Young;Ahn, Duck-Sun;Lee, Young-Ho;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • This study was designed to clarify the mechanism of the inhibitory action of a nitric oxide (NO) donor, 3-morpholino-sydnonimine (SIN-1), on contraction, cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. SIN-1 $(0.01{\sim}100\;{\mu}M)$ inhibited 25 mM KCl- or histamine $(10\;{\mu}M)-induced$ contraction in a concentration-dependent manner. SIN-1 reduced both the 25 mM KCl- and the histamine-stimulated increases in muscle tension in parallel with decreased $[Ca^{2+}]_i.$ Using the patch clamp technique with a holding potential of -60 mV, SIN-1 $(10\;{\mu}M)$ decreased peak Ba currents $(I_{Ba})$ by $30.9{\pm}5.4%$ (n=6) when voltage was stepped from -60 mV to +10 mV and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase inhibitor. Cu/Zn SOD (100 U/ml), the free radical scavenger, had little effect on basal $I_{Ba},$ and SIN-1 $(10\;{\mu}M)$ inhibited peak $I_{Ba}$ by $32.4{\pm}5.8%$ (n=5) in the presence of Cu/Zn SOD. In a cell clamped at a holding-potential of -40 mV, application of $10\;{\mu}M$ histamine induced an inward current. The histamine-induced inward current was markedly and reversibly inhibited by $10\;{\mu}M$ SIN-1, and this effect was abolished by ODQ $(1\;{\mu}M).$ In addition, SIN-1 markedly increased the depolarization-activated outward $K^+$ currents in the all potential ranges. We concluded that SIN-1 inhibits smooth muscle contraction mainly by decreasing $[Ca^{2+}]_i$ resulted from the inhibition of L-type $Ca^{2+}$ channels and the inhibition of nonselective cation currents and/or by the activation of $K^+$ currents via a cGMP-dependent pathway.

  • PDF