• 제목/요약/키워드: Intestinal microbiota

검색결과 178건 처리시간 0.028초

Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing

  • Lee, Sang A;Lim, Ji Ye;Kim, Bong-Soo;Cho, Su Jin;Kim, Nak Yon;Kim, Ok Bin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권3호
    • /
    • pp.242-248
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Feeding in infancy is the most significant determinant of the intestinal microbiota in early life. The aim of this study was to determine the gut microbiota of Korean infants and compare the microbiota obtained between breast-fed and formula-fed Korean infants. SUBJECTS/METHODS: We analyzed the microbial communities in fecal samples collected from twenty 4-week old Korean (ten samples in each breast-fed or formula-fed) infants using pyrosequencing. RESULTS: The fecal microbiota of the 4-week-old Korean infants consisted of the three phyla Actinobacteria, Firmicutes, and Proteobacteria. In addition, five species, including Bifidocbacterium longum, Streptococcus salivarius, Strepotococcus lactarius, Streptococcus pseudopneumoniae, and Lactobacillus gasseri were common commensal intestinal microbiota in all infants. The predominant intestinal microbiota in the breast-fed infants (BFI) included the phylum Actinobacteria (average 70.55%), family Bifidobacteriacea (70.12%), genus Bifidobacterium (70.03%) and species Bifidobacterium longum (69.96%). In the microbiota from the formula-fed infants (FFI), the proportion of the phylum Actinobacteria (40.68%) was less, whereas the proportions of Firmicutes (45.38%) and Proteobacteria (13.85%) as well as the diversity of each taxonomic level were greater, compared to those of the BFI. The probiotic species found in the 4-week-old Korean infants were Bifidobacterium longum, Streptococcus salivarius, and Lactobacillus gasseri. These probiotic species accounted for 93.81% of the microbiota from the BFI, while only 63.80% of the microbiota from the FFI. In particular, B. longum was more abundant in BFI (69.96%) than in FFI (34.17%). CONCLUSIONS: Breast milk supports the growth of B. longum and inhibits others. To the best of our knowledge, this study was the first attempt to analyze the gut microbiota of healthy Korean infants according to the feeding type using pyrosequencing. Our data can be used as a basis for further studies to investigate the development of intestinal microbiota with aging and disease status.

Comparison of the fecal microbiota with high- and low performance race horses

  • Taemook Park;Jungho Yoon;YoungMin Yun;Tatsuya Unno
    • Journal of Animal Science and Technology
    • /
    • 제66권2호
    • /
    • pp.425-437
    • /
    • 2024
  • Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.

발효 김치가 흰쥐의 장내 미생물 형성에 미치는 영향 (Modulation of Intestinal Microbiota by Supplementation of Fermented Kimchi in Rats)

  • 안수진;김재영;김인성;비슈누 아디카리;유다윤;김정아;권영민;이상석;최인순;조광근
    • 생명과학회지
    • /
    • 제29권9호
    • /
    • pp.986-995
    • /
    • 2019
  • 장내 미생물은 숙주의 건강을 유지하는 데 중요한 역할을 하며, 식단에 의하여직접적으로 영향을 받아 조절된다. 김치는 식이 섬유와 젖산균(LAB)이 풍부한 발효 식품이다. 발효 김치가 장내 미생물의 구성에 미치는 영향을 조사하기 위하여 6주령의 수컷 Sprague-Dawley 흰쥐 45마리를 대상으로 기본 사료(CON), 발효 김치(FK)와 키토산 첨가 발효 김치(CFK)를 각각 4주간 급여 하였다. 체중과 사료 섭취량을 매주 측정하였으며, 미생물 분석은 장내용물 수집 후 pyrosequencing을 통하여 16S rRNA 유전자 분석으로 확인 하였다. FK 및 CFK군은 대조군에 비해 체중, 사료 효율 및 혈중 triglyceride 농도가 감소한 것으로 나타났다. 장내 미생물의 다양성은 대조군에 비해 FK와 CFK군 모두에서 증가하였다. 비만과 관련된 Firmicutes 미생물이 감소한 반면, 체중 감소와 관련된 Bacteroidetes 미생물이 증가하였다. 젖산균과 체중 감소 관련 박테리아 및 butyrate 생산 박테리아는 대조군에 비해 FK 및 CFK군에서 증가하였다. 발효 김치는 비만을 억제하고 장내 유익한 미생물의 성장을 촉진하였다.

Effects of Queso Blanco Cheese Containing Bifidobacterium longum KACC 91563 on the Intestinal Microbiota and Short Chain Fatty Acid in Healthy Companion Dogs

  • Park, Ho-Eun;Kim, Ye Jin;Do, Kyung-Hyo;Kim, Jae Kwang;Ham, Jun-Sang;Lee, Wan-Kyu
    • 한국축산식품학회지
    • /
    • 제38권6호
    • /
    • pp.1261-1272
    • /
    • 2018
  • The effects of Queso Blanco cheese containing Bifidobacterium longum KACC 91563 was studied on the intestinal microbiota and short chain fatty acids (SCFAs) in healthy companion dogs. There were three experimental groups with five healthy dogs each: a control group, not fed with any cheese, and groups fed with Queso Blanco cheese with (QCB) or without B. longum KACC 91563 (QC) for 8 weeks. Fecal samples were collected 5 times before, during, and after feeding with cheese. Intestinal microbiota was analyzed using two non-selective agar plates (BL and TS) and five selective agar plates (BS, NN, LBS, TATAC, and MacConkey). SPME-GC-MS method was applied to confirm SCFAs and indole in dog feces. The six intestinal metabolites such as acetic, propionic, butyric, valeric, isovaleric acid and indole were identified in dog feces. Administration of B. longum KACC 91563 (QCB) for 8 weeks significantly increased the beneficial intestinal bacteria such as Bifidobacterium ($8.4{\pm}0.55$) and reduced harmful bacteria such as Enterobacteriaceae and Clostridium (p<0.05). SCFA such as acetic and propionic acid were significantly higher in the QCB group than in the Control group (p<0.05). In conclusion, this study demonstrates that administration of Queso Blanco cheese containing B. longum KACC 91563 had positive effects on intestinal microbiota and metabolites in companion dogs. These results suggest that Queso Blanco cheese containing B. longum KACC 91563 could be used as a functional food for companion animals and humans.

Regulation of Intestinal Homeostasis by Innate Immune Cells

  • Kayama, Hisako;Nishimura, Junichi;Takeda, Kiyoshi
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.227-234
    • /
    • 2013
  • The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

Korean Red Ginseng extract treatment prevents post-antibiotic dysbiosis-induced bone loss in mice

  • Ho Jun Kang;Nicholas Chargo;Soumya Chennupati;Kerri Neugebauer;Jae Youl Cho;Robert Quinn;Laura R. McCabe;Narayanan Parameswaran
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.265-273
    • /
    • 2023
  • Background: The intestinal microbiota is an important regulator of bone health. In previous studies we have shown that intestinal microbiota dysbiosis, induced by treatment with broad spectrum antibiotics (ABX) followed by natural repopulation, results in gut barrier dysfunction and bone loss. We have also shown that treatment with probiotics or a gut barrier enhancer can inhibit dysbiosis-induced bone loss. The overall goal of this project was to test the effect of Korean Red Ginseng (KRG) extract on bone and gut health using antibiotics (ABX) dysbiosis-induced bone loss model in mice. Methods: Adult male mice (Balb/C, 12-week old) were administered broad spectrum antibiotics (ampicillin and neomycin) for 2 weeks followed by 4 weeks of natural repopulation. During this 4-week period, mice were treated with vehicle (water) or KRG extract. Other controls included mice that did not receive either antibiotics or KRG extract and mice that received only KRG extract. At the end of the experiments, we assessed various parameters to assess bone, microbiota and in vivo intestinal permeability. Results: Consistent with our previous results, post-ABX- dysbiosis led to significant bone loss. Importantly, this was associated with a decrease in gut microbiota alpha diversity and an increase in intestinal permeability. All these effects including bone loss were prevented by KRG extract treatment. Furthermore, our studies identified multiple genera including Lactobacillus and rc4-4 as well as Alistipes finegoldii to be potentially linked to the effect of KRG extract on gut-bone axis. Conclusion: Together, our results demonstrate that KRG extract regulates the gut-bone axis and is effective at preventing dysbiosis-induced bone loss in mice.

Targeting the Gut Microbiome to Ameliorate Cardiovascular Diseases

  • Hwang, Soonjae;Park, Chan Oh;Rhee, Ki-Jong
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.166-174
    • /
    • 2017
  • The bacterial cells located within the gastrointestinal tract (GIT) outnumber the host's cells by a factor of ten. These human digestive-tract microbes are referred to as the gut microbiota. During the last ten years, our understanding of gut microbiota composition and its relation with intra- and extra-intestinal diseases including risk factors of cardiovascular diseases (CVD) such as atherosclerosis and metabolic syndrome, have greatly increased. A question which frequently arises in the research community is whether one can modulate the gut microbial environment to 'control' risk factors in CVD. In this review, we summarized promising intervention methods, based on our current knowledge of intestinal microbiota in modulating CVD. Furthermore, we explore how gut microbiota can be therapeutically exploited by targeting their metabolic program to control pathologic factors of CVD.

Refractory Clostridium difficile Infection Cured With Fecal Microbiota Transplantation in Vancomycin-Resistant Enterococcus Colonized Patient

  • Jang, Mi-Ok;An, Jun Hwan;Jung, Sook-In;Park, Kyung-Hwa
    • Intestinal research
    • /
    • 제13권1호
    • /
    • pp.80-84
    • /
    • 2015
  • The rates and severity of Clostridium difficile infections, including pseudomembranous colitis, have increased markedly. However, there are few effective treatments for refractory or recurrent C. difficile infections and the outcomes are poor. Fecal microbiota transplantation is becoming increasingly accepted as an effective and safe intervention in patients with recurrent disease, likely due to the restoration of a disrupted microbiome. Cure rates of >90% are being consistently reported from multiple centers. We cured a case of severe refractory C. difficile infection with fecal microbiota transplantation in a patient colonized by vancomycin-resistant enterococcus.

Development of a Novel Long-Range 16S rRNA Universal Primer Set for Metagenomic Analysis of Gastrointestinal Microbiota in Newborn Infants

  • Ku, Hye-Jin;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.812-822
    • /
    • 2014
  • Metagenomic analysis of the human intestinal microbiota has extended our understanding of the role of these bacteria in improving human intestinal health; however, a number of reports have shown that current total fecal DNA extraction methods and 16S rRNA universal primer sets could affect the species coverage and resolution of these analyses. Here, we improved the extraction method for total DNA from human fecal samples by optimization of the lysis buffer, boiling time (10 min), and bead-beating time (0 min). In addition, we developed a new long-range 16S rRNA universal PCR primer set targeting the V6 to V9 regions with a 580 bp DNA product length. This new 16S rRNA primer set was evaluated by comparison with two previously developed 16S rRNA universal primer sets and showed high species coverage and resolution. The optimized total fecal DNA extraction method and newly designed long-range 16S rRNA universal primer set will be useful for the highly accurate metagenomic analysis of adult and infant intestinal microbiota with minimization of any bias.

Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier

  • Begum Akuzum;June-Yong Lee
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.46.1-46.25
    • /
    • 2022
  • T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.