Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.9.986

Modulation of Intestinal Microbiota by Supplementation of Fermented Kimchi in Rats  

An, Su Jin (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kim, Jae Young (Swine Science and Technology Center, Gyeongnam National University of Science and Technology)
Kim, In Sung (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Adhikari, Bishnu (Department of Poultry Science, University of Arkansas)
Yu, Da Yoon (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kim, Jeong A (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kwon, Young Min (Department of Poultry Science, University of Arkansas)
Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University)
Choi, In Soon (Department of Life Science, Silla University)
Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Publication Information
Journal of Life Science / v.29, no.9, 2019 , pp. 986-995 More about this Journal
Abstract
Intestinal microbiota play a key role in maintaining the host's health, and variety and richness of this microbiota is directly influenced and modulated by the host's diet. Kimchi is a fermented food rich in dietary fibers and lactic acid bacteria (LAB). To investigate the effect of fermented kimchi on the host's response and the composition of intestinal microbiota, 45 male Sprague-Dawley rats six weeks old were divided into three experimental groups that received either a basal diet (CON) or a basal diet supplemented with fermented kimchi (FK) or chitosan-added fermented kimchi (CFK) for four weeks. Body weights and feed intakes were measured weekly, and the intestinal contents were collected aseptically and were used for 16S rRNA gene profiling via pyrosequencing. As compared to the control, FK and CFK groups showed less body weight gain, feed efficiency, and blood triglyceride concentration. The diversity of intestinal microbiota was increased in both FK and CFK as compared to the control. At the phylum level, obesity-associated Firmicutes decreased, while leanness-associated Bacteroidetes increased. At the genus-level, the genera that consist of LAB, leanness-associated bacteria, and butyric acid-producing bacteria increased in FK and CFK as compared to the control. The overall results suggest that the consumption of fermented kimchi can reduce obesity and promote the host's health through mechanisms involving the modulation of intestinal microbiota.
Keywords
Chitosan; Kimchi; microbiota; obesity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lin, H. V., Frassetto, A., Kowalik, E. J. Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G. and Marsh, D. J. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7, e35240.   DOI
2 Louis, P. and Flint, H. J. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS. Microbiol. Lett. 294, 1-8.   DOI
3 Mariat, D., Firmesse, O., Levenez, F., Guimarăes, V., Sokol, H., Dore, J., Corthier, G. and Furet, J. P. 2009. The Firmicutes/ Bacteroidetes ratio of the human microbiota changes with age. BMC. Microbiol. 9, 123.   DOI
4 Moon, E. W., Kim, S. Y., Dang, Y. M., Park, B. Y., Park, E. J., Song, H. Y., Yang, J. S., Yoon, S. R., Seo, H. Y. and Ha, J. H. 2019. Comparison of microbial and physicochemical properties between Pogi Kimchi and Mat Kimchi. J. Kor. Soc. Food. Cult. 34, 217-223.   DOI
5 Myers, E. W. and Miller, W. 1988. Optimal alignments in linear space. CABIOS. 4, 11-17.
6 Nagai, F., Morotomi, M., Watanabe, Y., Sakon, H. and Tanaka, R. 2010. Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int. J. Syst. Evol. Microbiol. 60, 1296-1302.   DOI
7 Park, J. A., Tirupathi Pichiah, P. B., Yu, J. J., Oh, S. H., Daily, J. W. 3rd. and Cha, Y. S. 2012. Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J. Appl. Microbiol. 113, 1507-1516.   DOI
8 Neyrinck, A. M., Possemiers, S., Druart, C., Van de Wiele, T., De Backer, F., Cani, P. D., Larondelle, Y. and Delzenne, N. M. 2011. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/ Prevotella in diet-induced obese mice. PLoS One 6, e20944.   DOI
9 No, H. K., Park, I. K. and Kim, S. D. 1995. Extension of shelf-life of Kimchi by addition of chitosan during salting. J. Kor. Soc. Food Nutr. 24, 932-936.
10 Park, J. A., Heo, G. Y., Lee, J. S., Oh, Y. J., Kim, B. Y., Mheen, T. I., Kim, C. K. and Ahn, J. S. 2003. Change of Microbial Communities in Kimchi. Kor. J. Microbiol. 39, 45-50.
11 Park, K. Y. 1995. The nutritional evaluation, and antimutagenic and anticancer effects of kimchi. J. Kor. Soc. Food Nutr. 24, 169-182.
12 Settanni, L. and Corsetti, A. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138.   DOI
13 Park, Y. H., Kim, J. G., Shin, Y. W., Kim, H. S., Kim, Y. J., Chun, T., Kim, S. H. and Whang, K. Y. 2008. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemiainduced pigs. Biosci. Biotechnol. Biochem. 72, 595-600.   DOI
14 Raymond, J. 2006. World's healthiest foods: Kimchi (Korea). Health Magazine.
15 Rumberger, J. M., Arch, J. R. and Green, A. 2014. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ. 2, e611.   DOI
16 Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N. A., Donus, C. and Hardt, P. D. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190-195.   DOI
17 Seo, J. S., Bang, B. H. and Jeong, E. J. 2004. Studies on the prolonging of Kimchi fermentation by adding chitosan. Kor. J. Food Nutr. 17, 60-65.
18 Slavin, J. L. 2005. Dietary fiber and body weight. Nutrition 21, 411-418.   DOI
19 Steimle, A., Gronbach, K., Beifuss, B., Schäfer, A., Harmening, R., Bender, A., Maerz, J. K., Lange, A., Michaelis, L., Maurer, A., Menz, S., McCoy, K., Autenrieth, I. B., Kalbacher, H. and Frick, J. S. 2016. Symbiotic gut commensal bacteria act as host cathepsin S activity regulators. J. Autoimmun. 75, 82-95.   DOI
20 Turnbaugh, P. J., Bäckhed, F., Fulton, L. and Gordon, J. I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223.   DOI
21 Choi, S. M., Jeon, Y. S., Rhee, S. H. and Park, K. Y. 2002. Red pepper powder and kimchi reduce body weight and blood and tissue lipids in rats fed a high fat diet. Prev. Nutr. Food Sci. 7, 162-167.   DOI
22 Ahn, S. C. and Lee, G. J. 1995. Effects of salt-fermented fish and Chitosan addition on the pectic substance and the texture changes of Kimchi during fermentation. Kor. J. Soc. Food. Sci. 11, 309-315.
23 Bloomer, R. J., Canale, R. E., Shastri, S. and Suvarnapathki, S. 2010. Effect of oral intake of capsaicinoid beadlets on catecholamine secretion and blood markers of lipolysis in healthy adults: a randomized, placebo controlled, double-blind, cross-over study. Lipids Health. Dis. 9, 72.   DOI
24 Cheigh, H. S., Song, E. S. and Jeon, Y. S. 1999. Changes of chemical and antioxidative characteristics of chlorophylls in the model system of mustard leaf kimchi during fermentation. J. Kor. Soc. Food Sci. Nutr. 5, 15-20.
25 Commission, C. A. 2001. Codex standard for kimchi (Codex Stan 223), pp. 1-3., USA.
26 De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 107, 14691-14696.   DOI
27 Hadwiger, L., Fristensky, B. and Riggleman, R. 1984. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. Chitin, chitosan and related enzymes 291-302.
28 Yang, J., Martínez, I., Walter, J., Keshavarzian, A. and Rose, D. J. 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23, 74-81.   DOI
29 Yoo, E. J., Lim, H. S., Kim, J. M., Song, S. H. and Choi, M. R. 1998. The investigation of chitosanoligosaccharide for prolongating fermentation period of kimchi. J. Kor. Soc. Food Sci. Nutr. 27, 869-874.
30 Despres, J. P., Moorjani, S., Tremblay, A., Ferland, M., Lupien, P. J., Nadeau, A. and Bouchard, C. 1989. Relation of high plasma triglyceride levels associated with obesity and regional adipose tissue distribution to plasma lipoprotein- lipid composition in premenopausal women. Clin. Invest. Med. 12, 374-380.
31 Han, K., Bose, S., Wang, J. H., Kim, B. S., Kim, M. J., Kim, E. J. and Kim, H. 2015. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 59, 1004-1008.   DOI
32 Jernberg, C., Sullivan, Å., Edlund, C. and Jansson, J. K. 2005. Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl. Environ. Microbiol. 71, 501-506.   DOI
33 Karlsson, F., Tremaroli, V., Nielsen, J. and Bäckhed, F. 2013. Assessing the human gut microbiota in metabolic diseases. Diabetes 62, 3341-3349.   DOI
34 Kelly, J. R., Borre, Y., O'Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F. and Dinan, T. G. 2016. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109-118.   DOI
35 Kim, J. Y., Choi, E. Y., Hong, Y. H., Song, Y. O., Han, J. S., Lee, S. S., Han, E. S., Kim, T. W., Choi, I. S. and Cho, K. K. 2016. Changes in Korean Adult Females' Intestinal Microbiota Resulting from Kimchi Intake. J. Nutr. Food Sci. 6, 486.
36 Kong, Y. H., Cheigh, H. S., Song, Y. O., Jo, Y. O. and Choi, S. Y. 2007. Anti-obesity effects of kimchi tablet composition in rats fed high-fat diet. J. Kor. Soc. Food Sci. Nutr. 36, 1529-1536.   DOI
37 Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721.   DOI
38 Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G. 2013. The gut microbiota suppresses insulinmediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829.   DOI
39 Kobayashi, A., Osaka, T., Namba, Y., Inoue, S., Lee, T. H. and Kimura, S. 1998. Capsaicin activates heat loss and heat production simultaneously and independently in rats. Am. J. Physiol. 275, R92-R98.
40 Lee, H. W., Park, Y. S., Jung, J. S. and Shin, W. S. 2002. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 8, 319-324.   DOI
41 Lee, J. H., Yi, H., Jeon, Y. S., Won, S. and Chun, J. 2012. TBC: a clustering algorithm based on prokaryotic taxonomy. J. Microbiol. 50, 181-185.   DOI