• Title/Summary/Keyword: Intestinal epithelial cell

Search Result 131, Processing Time 0.033 seconds

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

Multilayer Coating with Red Ginseng Dietary Fiber Improves Intestinal Adhesion and Proliferation of Probiotics in Human Intestinal Epithelial Models

  • Ye Seul Son;Mijin Kwon;Naeun Son;Sang-Kyu Kim;Mi-Young Son
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1309-1316
    • /
    • 2023
  • To exert their beneficial effects, it is essential for the commensal bacteria of probiotic supplements to be sufficiently protected as they pass through the low pH environment of the stomach, and effectively colonize the intestinal epithelium downstream. Here, we investigated the effect of a multilayer coating containing red ginseng dietary fiber, on the acid tolerance, and the adhesion and proliferation capacities of three Lactobacillus strains (Limosilactobacillus reuteri KGC1901, Lacticaseibacillus casei KGC1201, Limosilactobacillus fermentum KGC1601) isolated from Panax ginseng, using HT-29 cells, mucin-coated plates, and human pluripotent stem cell-derived intestinal epithelial cells as in vitro models of human gut physiology. We observed that the multilayer-coated strains displayed improved survival rates after passage through gastric juice, as well as high adhesion and proliferation capacities within the various gut epithelial systems tested, compared to their uncoated counterparts. Our findings demonstrated that the multilayer coat effectively protected commensal microbiota and led to improved adhesion and colonization of intestinal epithelial cells, and consequently to higher probiotic efficacy.

Homozygous Missense Epithelial Cell Adhesion Molecule Variant in a Patient with Congenital Tufting Enteropathy and Literature Review

  • Guvenoglu, Merve;Simsek-Kiper, Pelin Ozlem;Kosukcu, Can;Taskiran, Ekim Z.;Saltik-Temizel, Inci Nur;Gucer, Safak;Utine, Eda;Boduroglu, Koray
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.6
    • /
    • pp.441-452
    • /
    • 2022
  • Congenital diarrheal disorders (CDDs) with genetic etiology are uncommon hereditary intestinal diseases characterized by chronic, life-threatening, intractable watery diarrhea that starts in infancy. CDDs can be mechanistically divided into osmotic and secretory diarrhea. Congenital tufting enteropathy (CTE), also known as intestinal epithelial dysplasia, is a type of secretory CDD. CTE is a rare autosomal recessive enteropathy that presents with intractable neonatal-onset diarrhea, intestinal failure, severe malnutrition, and parenteral nutrition dependence. Villous atrophy of the intestinal epithelium, crypt hyperplasia, and irregularity of surface enterocytes are the specific pathological findings of CTE. The small intestine and occasionally the colonic mucosa include focal epithelial tufts. In 2008, Sivagnanam et al. discovered that mutations in the epithelial cell adhesion molecule (EpCAM, MIM# 185535) were the genetic cause of CTE (MIM# 613217). More than a hundred mutations have been reported to date. Furthermore, mutations in the serine peptidase inhibitor Kunitz type 2 (SPINT2, MIM# 605124) have been linked to syndromic CTE. In this study, we report the case of a 17-month-old male infant with congenital diarrhea. Despite extensive etiological workup, no etiology could be established before admission to our center. The patient died 15 hours after being admitted to our center in a metabolically decompensated state, probably due to a delay in admission and diagnosis. Molecular autopsy with exome sequencing revealed a previously reported homozygous missense variant, c.757G>A, in EpCAM, which was confirmed by histopathological examination.

Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

  • Gu, Min Jeong;Song, Sun Kwang;Park, Sung Moo;Lee, In Kyu;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.580-586
    • /
    • 2014
  • Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.

Stimulation of Platelet-Activating Factor (PAF) Synthesis in Human Intestinal Epithelial Cell Line by Aerolysin from Aeromonas encheleia

  • Nam In-Young;Cho Jae-Chang;Myung Hee-Joon;Joh Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1292-1300
    • /
    • 2006
  • Aeromonas encheleia, a potential human intestinal pathogen, was shown to infect a human intestinal epithelial cell line (Caco-2) in a noninvasive manner. The transcriptional profile of the Caco-2 cells after infection with the bacteria revealed an upregulated expression of genes involved in chloride secretion, including that of phospholipase A2 (PLA2) and platelet-activating factor (PAF) acetylhydrolase (PAFAH2). This was also confirmed by a real-time RT-PCR analysis. As expected from PLA2 induction, PAF was produced when the Caco-2 cells were infected with the bacteria, and PAF was also produced when the cells were treated with a bacterial culture supernatant including bacterial extracellular proteins, yet lacking lipopolysaccharides. Bacterial aerolysin was shown to induce the production of PAF.

Culturing of Rat Intestinal Epithelial Cells-18 on Plasma Polymerized Ethylenediamine Films Deposited by Plasma Enhanced Chemical Vapor Deposition

  • Choi, Chang-Rok;Kim, Kyung-Seop;Kim, Hong-Ja;Park, Heon-Yong;Jung, Dong-Geun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1357-1359
    • /
    • 2009
  • Many researchers studied cell culturing on surfaces with chemical functional groups. Previously, we reported surface properties of plasma polymerized ethylenediamine (PPEDA) films deposited by plasma enhanced chemical vapor deposition with various plasma conditions. Surface properties of PPEDA films can be controlled by plasma power during deposition. In this work, to analyze correlation of cell adherence/proliferation with surface property, we cultured rat intestinal epithelial cells-18 on the PPEDA films deposited with various plasma powers. It was shown that as plasma power was decreased, density of cells cultured on the PPEDA film surface was increased. Our findings indicate that plasma power changed the amine density of the PPEDA film surface, resulting in density change of cells cultured on the PPEDA film surface.

Papiliocin, an antimicrobial peptide, rescues hyperoxia-induced intestinal injury

  • Kim, Seong Ryul;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • Reactive oxygen species (ROS) induce a variety of cellular responses, such as proliferation, differentiation, senescence, and apoptosis. Intestinal epithelial cells are continuously exposed to ROS, and excessive generation of ROS severely damages cells via oxidative stress. Pro-inflammatory cytokines may lead to intestinal inflammation and damage by inducing excessive ROS generation. In this study, we showed that papiliocin, an antimicrobial peptide, significantly inhibited ROS production, without affecting cell viability. Moreover, TNF-α and IL-6 expression was decreased in the intestinal epithelial cells. The activity of papiliocin may significantly contribute to preserving the integrity of the intestinal mucosa against oxidative damage and inflammation-related disorders.

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria

  • Kwon, Gicheol;Heo, Bohye;Kwon, Mi Jin;Kim, Insu;Chu, Jaeryang;Kim, Byung-Yong;Kim, Byoung-Kook;Park, Sung Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.592-600
    • /
    • 2021
  • Probiotics can be processed into a powder, tablet, or capsule form for easy intake. They are exposed to frequent stresses not only during complex processing steps, but also in the human body after intake. For this reason, various coating agents that promote probiotic bacterial stability in the intestinal environment have been developed. Silk fibroin (SF) is a material used in a variety of fields from drug delivery systems to enzyme immobilization and has potential as a coating agent for probiotics. In this study, we investigated this potential by coating probiotic strains with 0.1% or 1% water-soluble calcium (WSC), 1% SF, and 10% trehalose. Under simulated gastrointestinal conditions, cell viability, cell surface hydrophobicity, and cell adhesion to intestinal epithelial cells were then measured. The survival ratio after freeze-drying was highest upon addition of 0.1% WSC. The probiotic bacteria coated with SF showed improved survival by more than 10.0% under simulated gastric conditions and 4.8% under simulated intestinal conditions. Moreover, the cell adhesion to intestinal epithelial cells was elevated by 1.0-36.0%. Our results indicate that SF has positive effects on enhancing the survival and adhesion capacity of bacterial strains under environmental stresses, thus demonstrating its potential as a suitable coating agent to stabilize probiotics throughout processing, packaging, storage and consumption.

Study on the Respiratory Organ of Spined Loach, Iksookimia longicorpa (Pisces, Cobitidae), in Relation to the Air-breathing System (공기호흡과 관련된 왕종개(미꾸리과어류)의 호흡기관에 관한 연구)

  • Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.17 no.4
    • /
    • pp.241-247
    • /
    • 2005
  • To observe the respiratory system in relation to the air-breathing organ in Iksookimia longicorpa, micro-anatomical investigation was performed on the epidermis and on intestinal tract fragments. The epidermis was distinguished by two types of skin glands, a small mucous cell and a large club cell. The mucous cell was acid sulfomucins (some sialomucins), but the club cell did not give any histochemical tests for mucosubstances. The presence of a well defined lymphatic system with small lymphocytes was established in the stratum germinativum layer of the epidermis. A large number of blood capillaries run very close to each other just below the basement membrane. The straight intestinal tract is divided into an intestine and rectum, which consisted of a mucosa (epithelial layer), lamina propria-submucosa, muscularis, and serosa. The intestine and rectum have shorter mucosal folds and a thinner wall. The majority of the epithelial mucous cells contain acid sulfomucines. Based on the above results, I. longicorpa adapts to poor dissolved oxygen conditions by using an additional respiratory system using air through the epidermis, not the intestines.