• Title/Summary/Keyword: Intestinal barrier function

Search Result 45, Processing Time 0.028 seconds

Vitamin D Improves Intestinal Barrier Function in Cirrhosis Rats by Upregulating Heme Oxygenase-1 Expression

  • Wang, Peng-fei;Yao, Dan-hua;Hu, Yue-yu;Li, Yousheng
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.222-230
    • /
    • 2019
  • Intestinal barrier dysfunction always accompanies cirrhosis in patients with advanced liver disease and is an important contributor facilitating bacterial translocation (BT), which has been involved in the pathogenesis of cirrhosis and its complications. Several studies have demonstrated the protective effect of Vitamin D on intestinal barrier function. However, severe cholestasis leads to vitamin D depletion. This study was designed to test whether vitamin D therapy improves intestinal dysfunction in cirrhosis. Rats were subcutaneously injected with 50% sterile $CCl_4$ (a mixture of pure $CCl_4$ and olive oil, 0.3 mL/100 g) twice a week for 6 weeks. Next, $1,25(OH)_2D_3$ ($0.5{\mu}g/100g$) and the vehicle were administered simultaneously with $CCl_4$ to compare the extent of intestinal histologic damage, tight junction protein expression, intestinal barrier function, BT, intestinal proliferation, apoptosis, and enterocyte turnover. Intestinal heme oxygenase-1 (HO-1) expression and oxidative stress were also assessed. We found that vitamin D could maintain intestinal epithelial proliferation and turnover, inhibit intestinal epithelial apoptosis, alleviate structural damage, and prevent BT and intestinal barrier dysfunction. These were achieved partly through restoration of HO-1 and inhibition of oxidative stress. Taken together, our results suggest that vitamin D ameliorated intestinal epithelial turnover and improved the integrity and function of intestinal barrier in $CCl_4$-induced liver cirrhotic rats. HO-1 signaling activation was involved in these above beneficial effects.

Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling

  • Cao, Ying-Ya;Wang, Zhong-Han;Xu, Qian-Cheng;Chen, Qun;Wang, Zhen;Lu, Wei-Hua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • The intestinal barrier function disrupted in sepsis, while little is known about the variation in different phases of sepsis. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). The H&E staining of sections and serum diamine oxidase concentration were evaluated at different timepoint after CLP. TUNEL assay and EdU staining were performed to evaluate the apoptosis and proliferation of intestinal epithelium. Relative protein expression was assessed by Western blotting and serum concentrations of pro-inflammatory cytokines was measured by ELISA. The disruption of intestinal barrier worsened in the first 24 h after the onset of sepsis and gradually recovered over the next 24 h. The percentage of apoptotic cell increased in the first 24 h and dropped at 48 h, accompanied with the proliferative rate of intestinal epithelium inhibited in the first 6 h and regained in the later period. Furthermore, the activity of nuclear factor kappa B (NF-κB) presented similar trend with the intestinal barrier function, shared positive correction with apoptosis of intestinal epithelium. These findings reveal the conversion process of intestinal barrier function in sepsis and this process is closely correlated with the activity of NF-κB signaling.

Contributions of HO-1-Dependent MAPK to Regulating Intestinal Barrier Disruption

  • Zhang, Zhenling;Zhang, Qiuping;Li, Fang;Xin, Yi;Duan, Zhijun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.175-183
    • /
    • 2021
  • The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junctions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using monolayers of Caco-2 cells treated with tissue necrosis factor α (TNF-α) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) administration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF-α increased epithelial TJ disruption and cleaved caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF-α-induced increase in epithelial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.

Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

  • Gu, Min Jeong;Song, Sun Kwang;Park, Sung Moo;Lee, In Kyu;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.580-586
    • /
    • 2014
  • Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.

Leaky Gut in IBD: Intestinal Barrier-Gut Microbiota Interaction

  • Yu, Shunying;Sun, Yibin;Shao, Xinyu;Zhou, Yuqing;Yu, Yang;Kuai, Xiaoyi;Zhou, Chunli
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.825-834
    • /
    • 2022
  • Inflammatory bowel disease (IBD) is a global disease that is in increasing incidence. The gut, which contains the largest amount of lymphoid tissue in the human body, as well as a wide range of nervous system components, is integral in ensuring intestinal homeostasis and function. By interacting with gut microbiota, immune cells, and the enteric nervous system, the intestinal barrier, which is a solid barrier, protects the intestinal tract from the external environment, thereby maintaining homeostasis throughout the body. Destruction of the intestinal barrier is referred to as developing a "leaky gut," which causes a series of changes relating to the occurrence of IBD. Changes in the interactions between the intestinal barrier and gut microbiota are particularly crucial in the development of IBD. Exploring the leaky gut and its interaction with the gut microbiota, immune cells, and the neuroimmune system may help further explain the pathogenesis of IBD and provide potential therapeutic methods for future use.

Dietary Regulations of the Intestinal Barrier Function at Weaning

  • Bosi, Paolo;Gremokolini, Cyrien;Trevisi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.596-608
    • /
    • 2003
  • Weaning is a complex phase when the mammal suffers the action of different stressors that contribute to negatively affect the efficiency of the intestinal mucosa and of the whole local integrated system, that acts as barrier against any nocuous agent. The components of this barrier are mechanical, chemical, and bacteriological; immunological and not. The development of contact with a saprophyte microflora and the maintenance of feed intake after the interruption of motherly nutrition are essential for the maturation of an equilibrated local immune function and for a functional integrity of villi. Opportunities and limits of some dietary strategies that can contribute to reduce negative effects of weaning on health and performance are discussed. Knowledges on the possible mechanism of action of probiotics are upgraded, particularly for their supposed role in the balance between different immune functions (effectory/regulatory). Some tools to control pathogen microflora are reviewed (acids, herbs, immunoglobulin sources) and practical feeding systems are proposed.

Glutamate attenuates lipopolysaccharide induced intestinal barrier injury by regulating corticotropin-releasing factor pathway in weaned pigs

  • Guo, Junjie;Liang, Tianzeng;Chen, Huifu;Li, Xiangen;Ren, Xiaorui;Wang, Xiuying;Xiao, Kan;Zhao, Jiangchao;Zhu, Huiling;Liu, Yulan
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1235-1249
    • /
    • 2022
  • Objective: The purpose of this study was to evaluate the protection of glutamate (GLU) against the impairment in intestinal barrier function induced by lipopolysaccharide (LPS) stress in weaned pigs. Methods: Twenty-four weaned pigs were divided into four treatments containing: i) non-challenged control, ii) LPS-challenged control, iii) LPS+1.0% GLU, and iv) LPS+2.0% GLU. On day 28, pigs were treated with LPS or saline. Blood samples were collected at 0, 2, and 4 h post-injection. After blood samples collection at 4 h, all pigs were slaughtered, and spleen, mesenteric lymph nodes, liver and intestinal samples were obtained. Results: Dietary GLU supplementation inhibited the LPS-induced oxidative stress in pigs, as demonstrated by reduced malondialdehyde level and increased glutathione level in jejunum. Diets supplemented with GLU enhanced villus height, villus height/crypt depth and claudin-1 expression, attenuated intestinal histology and ultrastructure impairment induced by LPS. Moreover, GLU supplementation reversed intestinal intraepithelial lymphocyte number decrease and mast cell number increase induced by LPS stress. GLU reduced serum cortisol concentration at 4 h after LPS stress and downregulated the mRNA expression of intestinal corticotropin-releasing factor signal (corticotrophin-releasing factor [CRF], CRF receptor 1 [CRFR1], glucocorticoid receptor, tryptase, nerve growth factor, tyrosine kinase receptor A), and prevented mast cell activation. GLU upregulated the mRNA expression of intestinal transforming growth factor β. Conclusion: These findings indicate that GLU attenuates LPS-induced intestinal mucosal barrier injury, which is associated with modulating CRF signaling pathway.

Establishing porcine jejunum-derived intestinal organoids to study the function of intestinal epithelium as an alternative for animal testing

  • Bo Ram Lee;Sun A Ock;Mi Ryung Park;Min Gook Lee;Sung June Byun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.2-11
    • /
    • 2024
  • Background: The small intestine plays a crucial role in animals in maintaining homeostasis as well as a series of physiological events such as nutrient uptake and immune function to improve productivity. Research on intestinal organoids has recently garnered interest, aiming to study various functions of the intestinal epithelium as a potential alternative to an in vivo system. These technologies have created new possibilities and opportunities for substituting animals for testing with an in vitro model. Methods: Here, we report the establishment and characterisation of intestinal organoids derived from jejunum tissues of adult pigs. Intestinal crypts, including intestinal stem cells from the jejunum tissue of adult pigs (10 months old), were sequentially isolated and cultivated over several passages without losing their proliferation and differentiation using the scaffold-based and three-dimensional method, which indicated the recapitulating capacity. Results: Porcine jejunum-derived intestinal organoids showed the specific expression of several genes related to intestinal stem cells and the epithelium. Furthermore, they showed high permeability when exposed to FITC-dextran 4 kDa, representing a barrier function similar to that of in vivo tissues. Collectively, these results demonstrate the efficient cultivation and characteristics of porcine jejunum-derived intestinal organoids. Conclusions: In this study, using a 3D culture system, we successfully established porcine jejunum-derived intestinal organoids. They show potential for various applications, such as for nutrient absorption as an in vitro model of the intestinal epithelium fused with organ-on-a-chip technology to improve productivity in animal biotechnology in future studies.

Dietary spray-dried plasma improves intestinal morphology of mated female mice under stress condition

  • Liu, Yanhong;Choe, Jeehwan;Kim, Sheena;Kim, Byeonghyeon;Campbell, Joy M.;Polo, Javier;Crenshaw, Joe D.;Pettigrew, James E.;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.10.1-10.6
    • /
    • 2018
  • Background: Stress causes inflammation that impairs intestinal barrier function. Dietary spray-dried plasma (SDP) has recognized anti-inflammatory effects and improvement of gut barrier function. Therefore, the purpose of this study was to investigate the effects of dietary SDP on intestinal morphology of mated female mice under stress condition. Results: Villus height, width, and area of small intestines were low on gestation day (GD) 3 or 4 under stress conditions, and higher later (Time, P < 0.05). Crypt depth of colon was low on GD 4 and higher later (Time, P < 0.05). Meanwhile, the SDP treatments improved (P < 0.05) intestinal morphology, indicated by increased villus height, villus width, villus area, and ratio between villus height and crypt depth of small intestines and crypt depth of colon, and by decreased crypt depth of small intestines, compared with the control diet. The SDP treatments also increased (P < 0.05) the number of goblet cells in intestines compared with the control diet. There were no differences between different levels of SDP. Conclusion: Dietary SDP improves intestinal morphology of mated female mice under stress condition.

Protective Effect of Lactobacillus fermentum LA12 in an Alcohol-Induced Rat Model of Alcoholic Steatohepatitis

  • Kim, Byoung-Kook;Lee, In-Ock;Tan, Pei-Lei;Eor, Ju-Young;Hwang, Jae-Kwan;Kim, Sae-Hun
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.931-939
    • /
    • 2017
  • Alcoholic liver disease (ALD) is a complex multifaceted disease that involves oxidative stress and inflammation as the key mediators. Despite decades of intensive research, there are no FDA-approved therapies, and/or no effective cure is yet available. Probiotics have received increasing attention in the past few years due to their well-documented gastrointestinal health-promoting effects. Interestingly, emerging studies have suggested that certain probiotics may offer benefits beyond the gut. Lactobacillus fermentum LA12 has been previously demonstrated to play a role in inflammatory-related disease. However, the possible protective effect of L. fermentum LA12 on ALD still remain to be explored. Thus, the aim of this study was to evaluate the possible protective effect of L. fermentum LA12 on alcohol-induced gut barrier dysfunction and liver damage in a rat model of alcoholic steatohepatitis (ASH). Daily oral administration of L. fermentum LA12 in rat model of ASH for four weeks was shown to significantly reduced intestinal nitric oxide production and hyperpermeability. Moreover, small intestinal histological- and qRT-PCR analysis further revealed that L. fermentum LA12 treatment was capable of up-regulating the mRNA expression levels of tight junction proteins, thereby stimulating the restitution of barrier structure and function. Serum and hepatic analyses also revealed that the restoration of epithelial barrier function may prevent the leakage of endotoxin into the blood, subsequently improve liver function and hepatic steatosis in the L. fermentum LA12-treated rats. Altogether, results in this study suggest that L. fermentum LA12 may be used as a dietary adjunct for the prevention and treatment of ASH.