• 제목/요약/키워드: Intestinal barrier

검색결과 103건 처리시간 0.028초

Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors

  • Min-Gyu Gwak;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.20.1-20.18
    • /
    • 2021
  • The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan;Sun, Rui;Qiao, Xiangjin;Xu, Cuicui;Shang, Xiaoya;Niu, Weining;Chao, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2014
  • The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.

Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress

  • Hyun Woo Kim;Seung Yun Lee;Sun Jin Hur;Dong Yong Kil;Jong Hyuk Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.1040-1052
    • /
    • 2023
  • The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.

하태독법의 최신 연구 동향 (Recent Research Trends of Hataedock)

  • 주현주;천진홍;김기봉
    • 대한한방소아과학회지
    • /
    • 제34권4호
    • /
    • pp.31-42
    • /
    • 2020
  • Objectives The purpose of this study is to perform a review on recent researches of Hataedock, a traditional method of removing fetal toxin by dropping herbal extracts in the mouth, to appraise its preventive and therapeutic effects of diseases. Methods Studies of Hataedock were extracted from both Chinese and Korean medical journals published within 10 years, from January 2010 to January 2020. Clinical studies and experimental researches were analyzed and categorized to skin disease, allergic rhinitis, intestinal mucosa inflammation and anal fistula for further evaluation. Results Among 194 studies were searched and screened, 22 met designated criteria. Hataedock showed the effectiveness in treating skin disease, allergic rhinitis, intestinal mucosa inflammation and anal fistula by maintaining skin barrier and regulating immune system. Coptis japonica, Glycyrrhiza uralensis, and Fermented Glycine max were mainly used as herbal extracts in Hataedock. Conclusion This study shows the recent research trends of Hataedock and suggests that Hataedock can be considered as a method of treatment or prevention to some of the incurable chronic diseases.

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets

  • Xing, Shen;Zhang, Bolin;Lin, Meng;Zhou, Ping;Li, Jiaolong;Zhang, Lin;Gao, Feng;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.236-245
    • /
    • 2017
  • Objective: The study was to investigate the effects of alanyl-glutamine (Ala-Gln) and glutamine (Gln) supplementation on the intestinal mucosa barrier in piglets. Methods: A total of 180 barrows with initial weight $10.01{\pm}0.03kg$ were randomly allocated to three treatments, and each treatment consisted of three pens and twenty pigs per pen. The piglets of three groups were fed with control diet [0.62% alanine (Ala)], Ala-Gln diet (0.5% Ala-Gln), Gln diet (0.34% Gln and 0.21% Ala), respectively. Results: The results showed that in comparison with control diet, dietary Ala-Gln supplementation increased the height of villi in duodenum and jejunum (p<0.05), Gln supplementation increased the villi height of jejunum (p<0.05), Ala-Gln supplementation up-regulated the mRNA expressions of epidermal growth factor receptor and insulin-like growth factor 1 receptor in jejunal mucosa (p<0.05), raised the mRNA expressions of Claudin-1, Occludin, zonula occludens protein-1 (ZO-1) and the protein levels of Occludin, ZO-1 in jejunal mucosa (p<0.05), Ala-Gln supplementation enlarged the number of goblet cells in duodenal and ileal epithelium (p<0.05), Gln increased the number of goblet cells in duodenal epithelium (p<0.05) and Ala-Gln supplementation improved the concentrations of secretory immunoglobulin A and immunoglobulin G in the jejunal mucosa (p<0.05). Conclusion: These results demonstrated that dietary Ala-Gln supplementation could maintain the integrity of small intestine and promote the functions of intestinal mucosa barriers in piglets.

Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

  • Ren, M.;Zhang, S.H.;Zeng, X.F.;Liu, H.;Qiao, S.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권12호
    • /
    • pp.1742-1750
    • /
    • 2015
  • As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets ($7.96{\pm}0.26kg$) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

Investigation of transport of PEGylated salmon calcitonin through caco-2 cell monolayers

  • Oh, Seung-Huyn;Youn, Yu-Seok;Lee, Jeong-Eun;Park, Yun-Sang;Lee, Kang-Choon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.234.3-235
    • /
    • 2003
  • The aim of this study is to evaluate the permeability of PEG-conjugated salmon calcitonin (sCT) across monolayers of Caco-2 cells that represent a model of the intestinal barrier. Caco-2 cells were grown to confluency on a permeable polycarbonate membrane to permit transport through it. Permeability experiments were performed with native-sCT and PEG-conjugated sCT (PEG M.W. 2000) at various concentrations (5uM, 10uM, 25uM, 50uM, 100uM) in the apical to basolateral direction. The barrier properties were assessed by detecting transport of markder molecules ($^3$H-mannitol) and by measuring transepithelial electrical resistance (TEER). (omitted)

  • PDF