Browse > Article
http://dx.doi.org/10.5713/ajas.14.0131

Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet  

Ren, M. (State Key Laboratory of Animal Nutrition, China Agricultural University)
Zhang, S.H. (State Key Laboratory of Animal Nutrition, China Agricultural University)
Zeng, X.F. (State Key Laboratory of Animal Nutrition, China Agricultural University)
Liu, H. (State Key Laboratory of Animal Nutrition, China Agricultural University)
Qiao, S.Y. (State Key Laboratory of Animal Nutrition, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.12, 2015 , pp. 1742-1750 More about this Journal
Abstract
As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets ($7.96{\pm}0.26kg$) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.
Keywords
Weaned Pig; Growth Performance; Immunity; Small Intestine; Morphology; Immunoglobulin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stoll, B., J. Henry, P. J. Reeds, H. Yu, F. Jahoor, and D. G. Burrin. 1998. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 128:606-614.   DOI
2 Tan, B., X. G. Li, X. Kong, R. Huang, Z. Ruan, K. Yao, Z. Deng, M. Xie, I. Shinzato, Y. Yin, and G. Wu. 2009. Dietary Larginine supplementation enhances the immune status in earlyweaned pglets. Amino Acids. 37:323-331.   DOI
3 Wang, J. J., L. Chen, P. Li, X. Li, H. Zhou, F. Wang, D. Li, Y. Yin, and G. Wu. 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138:1025-1032.   DOI
4 Wells, J. M., L. M. P. Loonen, and J. M. Karczewski. 2010. The role of innate signalling in the homeostasis of tolerance and immunity in the intestine. Int. J. Med. Microbiol. 300:41-48.   DOI
5 Wu, G. 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128:1249-1252.   DOI
6 Wu, G. 2009. Amino acids: Metabolism, functions, and nutrition. Amino Acids 37:1-17.
7 Yoneda, J., A. Andou, and K. Takehana. 2009. Regulatory roles of amino acids in immune response. Curr. Rheumatol. Rev. 5:252-258.   DOI
8 Yue, L. Y. and S. Y. Qiao. 2007. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci. 115:144-152.
9 Zhang, F., X. Zeng, F. Yang, Z. Huang, H. Liu, X. Ma, and S. Qiao. 2013. Dietary N-carbamylglutamate supplementation boosts intestinal mucosal immunity in Escherichia coli challenged piglets. Plos One. 8(6):e66280.   DOI
10 Kerr, B. J. 2003. Dietary manipulation to reduce environmental impact. Page139-158 in 9th International Symposium on Digestive Physiology in Pigs, May 14-17, 2003; Banff, Alberta, Canada.
11 Kinnebrew, M. A. and E. G. Pamer. 2012. Innate immune signaling in defense against intestinal microbes. Immunol. Rev. 245:113-131.   DOI
12 Lalles, J. P., P. Bosi, H. Smidt, and C. R. Stokes. 2007. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 66:260-268.   DOI
13 Li, P., Y. Yin, D. Li, S. W. Kim, and G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237-252.   DOI
14 Lordelo, M. M., A. M. Gaspar, L. Le Bellego, and J. P. B. Freire. 2008. Isoleucine and valine supplementation of a low-protein corn-wheat-soybean meal-based diet for piglets: growth performance and nitrogen balance. J. Anim. Sci. 86:2936-2941.   DOI
15 Lundqvist, C., V. Baranov, S. Hammarstrom, L. Athlin, and M. L. Hammarstrom. 1995. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int. Immunol. 7:1473-1487.   DOI
16 Mao, X., X. Zeng, S. Qiao, G. Wu, and D. Li. 2011. Specific roles of threonine in intestinal mucosal integrity and barrier function. Front Biosci. E3:1192-1200.   DOI
17 McCracken, B. A., H. R. Gaskins, P. J. Ruwe-Kaiser, K. C. Klasing, and D. E. Jewell. 1995. Diet-dependent and dietindependent metabolic responses underlie growth stasis of pigs at weaning. J. Nutr. 125:2838-2845.
18 McGuckin, A. M., R. Eri, L. A. Simms, T. H. J. Florin, and G. Radford-Smith. 2009. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis. 15:100-113.   DOI
19 Zijlstra, R. T., J. Odle, W. F. Hall, B. W. Petschow, H. B. Gelbery, and R. E. Litov. 1994. Effect of orally administered epidermal growth factor on intestinal recovery of neonatal pigs infected with rotavirus. J. Pediatr. Gastroenterol. Nutr. 19:382-390.   DOI
20 Zhu, H. L., Y. L. Liu, X. L. Xie, J. J. Huang, and Y. Q. Hou. 2013. Effect of L-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immun. 19:242-252.   DOI
21 Con, J., B. Joseph, N. Kulvatunyou, A. Tang, T. O'Keeffe, J. L. Wynne, R. S. Friese, P. Rhee, and R. Latifi. 2011. Evidencebased immune-modulating nutritional therapy in critically ill and injured patients. Eur. Surg. 43:13-18.   DOI
22 AOAC. 2007. Official Methods of Analysis. 18th ed. AOAC international, Gaithersburg, MD, USA.
23 Calder, P. C. and P. Yaqoob. 1999. Glutamine and the immune system. Amino Acids 17:227-241.   DOI
24 Carr, L. E., A. Kelman, S. G. Wu, R. Gopaul, E. Senkevitch, A. Aghvanyan, A. M. Turay, and K. A. Frauwirth. 2010. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185:1037-1044.   DOI
25 Cummins, A. G. and F. M. Thompson. 2002. Effect of breast milk and weaning on epithelial growth of the small intestine in human. Gut 51:748-754.   DOI
26 Doppenberg, J. and P. J. van der Aar. 2010. Dynamics in Animal Nutrition. Wageingen Accademic Publishers, Wageingen, The Netherlands. Page 31-36.
27 NRC. 1998. Nutrient Requirements of Swine, 10th Edition. National Academy Press, Washington DC, USA.
28 Miller, B. G., P. S. Jamies, M. W. Smith, and F. J. Bourne. 1986. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. J. Agric. Sci. Camb. 107:579-589.   DOI
29 Moore, S. 1963. On the determination of cystine as cysteic acid. J. Biol. Chem. 238:235-237.
30 Nabuurs, M. J., A. Hoogendoorn, E. J. V. Molen, and A. L. Van Osta. 1993. Villous height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55:78-84.   DOI
31 NRC. 2012. Nutrient Requirements of Swine, 11th Edition. National Academy Press, Washington DC, USA.
32 Nofrarías, M., E. G. Manzanilla, J. Pujols, X. Gibert, N. Majo, J. Segales and J. Gasa. 2006. Effects of spray- dried porcine plasma and plant exreacts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J. Anim. Sci. 84:2735-2742.   DOI
33 Nyachoti, C. M., F. O. Omoghenigun, M. Rademacher, and G. Blank. 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acids-supplemented diets. J. Anim. Sci. 84:125-134.   DOI
34 Oswald, I. P. 2006. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet. Res. 37:359-368.   DOI
35 Wijtten, J. A. P., J. van der Meulen, and M. W. A. Verstegen. 2011. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 105:967-981.   DOI
36 Guay, F., S. M. Donovan, and N. L. Trottier. 2006. Biochemical and morphological developments are practically impaired in intestinal mucosa from growing pigs fed reduced-protein diets supplemented with crystalline amino acids. J. Anim. Sci. 84:1749-1760.   DOI
37 Dugan, M. E. R., D. A. Knabe, and G. Wu. 1994. Glutamine and glucose metabolism in intraepithelial lymphocytes from preand post-weaning pigs. Comp. Biochem. Phys. B. Comp. Biochem. 109:675-681.   DOI
38 Evoy, D., M. D. Lieberman, T. J. Fahey, and J. M. Daly. 1998. Immuninutrition: The role of arginine. Nutrition 14:611-617.   DOI
39 Figueroa, J. L., A. J. Lewis, P. S. Miller, R. L. Fischer, R. S. Gomez, and R. M. Diedrichsen. 2002. Nitrogen metabolism and growth performance of gilts fed standard maize-soybean meal diets or low-crude protein, amino acid supplemented diets. J. Anim. Sci. 80:2911-2919.   DOI
40 Guy-Grand, D, J. P. DiSanto, P. Henchoz, M. Malassis-Seris, and P. Vassalli. 1998. Small bowel enteropathy: role of interepithelial lymphocytes and of cytokines (IL-12, $INF-{\gamma}$, TNF) in the induction of epithelial cell death and renewal. Eur. J. Immunol. 28:730-744.   DOI
41 Heo, J. M., J. C. Kim, C. F. Hansen, B. P. Mullan, D. J. Hanpson, and J. R. Pluske. 2008. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr. 62:343-358.   DOI
42 Htoo, J. K., B. A. Araiza, W. C. Sauer, M. Rademacher, Y. Zhang, M. Cervantes, and R. T. Aijlstra. 2007. Effect of dietary protein content on ileal amino acid digestibility, growth performance, and formation of microbial metabolites in ileal and cecal digest of early-weaned pigs. J. Anim. Sci. 85:3303-3312.   DOI
43 Powell, D. J., K. N. Pollizzi, E. B. Heikamp, and M. R. Horton. 2012. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30:39-68.   DOI
44 Pie, S., J. P. Lalle, F. Blazy, J. Laffitte, B. Seve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 124:641-647.
45 Pluske, J. R., M. J. Thompson, C. S. Atwood, P. H. Bird, I. H. Williams, and P. E. Hartmann. 1996. Maintenance of villous height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows' whole milk after weaning. Br. J. Nutr. 76:409-422.   DOI
46 Pomorska-Mol, M. and I. Markowska-Daniel. 2011. Porcine cathelicidins and defensins. Med. Weter 67:20-24.
47 Rose, N., G. Larour, G. Le Digyerher, E. Everno, J. P. Jolly, P. Blanchard, A. Oger, M. Le Dimna, A. Jestin, and F. Madec. 2003. Risk factors for porcine post-weaning multisystemic wasting syndrome (PMWS) in 149 French farrow-to-finish herds. Prev. Vet. Med. 61:209-225.   DOI
48 Santaolalla, R., M. Fukata, and M. T. Abreu. 2011. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 27:125-131.   DOI
49 Simone, D. R., F. Vissicchio, C. Mingarelli, C. D. Nuccio, S. Visentin, M. A. Ajmone-Cat, and L. Minghetti. 2013. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to proinflammatory signals. Biochim. Biophys. Acta Mol. Basis Dis. 1832:650-659.   DOI
50 Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. F Rivier, A. T. Blisklager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 298:352-363.   DOI