• Title/Summary/Keyword: Intestinal Structure

Search Result 99, Processing Time 0.038 seconds

Theoretical Protein Structure Prediction of Glucagon-like Peptide 2 Receptor Using Homology Modelling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Glucagon-like peptide 2 receptor, a GPCR, binds with the glucagon-like peptide, GLP-2 and regulates various metabolic functions in the gastrointestinal tract. It plays an important role in the nutrient homeostasis related to nutrient assimilation by regulating mucosal epithelium. GLP-2 receptor affects the cellular response to external injury, by controlling the intestinal crypt cell proliferation. As they are therapeutically attractive towards diseases related with the gastrointestinal tract, it becomes essential to analyse their structural features to study the pathophysiology of the diseases. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor based on single- and multiple template modeling. The models were subjected to model validation and a reliable model based on the validation statistics was identified. The predicted model could be useful in studying the structural features of GLP-2 receptor and their role in various diseases related to them.

Effect of oral spray with Lactobacillus on growth performance, intestinal development and microflora population of ducklings

  • Zhang, Qi;Jie, Yuchen;Zhou, Chuli;Wang, Leyun;Huang, Liang;Yang, Lin;Zhu, Yongwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.456-464
    • /
    • 2020
  • Objective: The aim of this study is to investigate the effect of oral spray with probiotics on the intestinal development and microflora colonization of hatched ducklings. Methods: In Exp. 1, an one-way factorial design was used to study the antibacterial activity of the probiotics and metabolites on Escherichia coli (E. coli) without antimicrobial resistance. There were four experimental groups including saline as control and Lactobacillus, Bacillus subtilis, combined Lactobacillus and Bacillus subtilis groups. In Exp. 2, 64-day-old ducklings were allotted to 2 treatments with 4 replicated pens. Birds in the control group were fed a basal diet supplemented with Lactobacillus fermentation in the feed whereas birds in the oral spray group were fed the basal diet and administrated Lactobacillus fermentation by oral spray way during the first week. Results: In Exp. 1, the antibacterial activities of probiotics and metabolites on E. coli were determined by the diameter of inhibition zone in order: Lactobacillus>combined Lactobacillus and Bacillus subtilis>Bacillus subtilis. Additionally, compared to E. coli without resistance, E. coli with resistance showed a smaller diameter of inhibition zones. In Exp. 2, compared to control feeding group, oral spray group increased (p<0.05) the final body weight at d 21 and average daily gain for d 1-21 and the absolute weight of the jejunum, ileum and total intestine tract as well as cecum Lactobacillus amount at d 21. Conclusion: Lactobacillus exhibited a lower antibacterial activity on E. coli with resistance than E. coli without resistance. Oral spray with Lactobacillus fermentation during the first week of could improve the intestinal development, morphological structure, and microbial balance to promote growth performance of ducklings from hatch to 21 d of age.

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation

  • Park, Young-Hoon;Jeong, Suk;Ha, Ki-Tae;Yu, Hak Sun;Jang, Se Bok
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.269-274
    • /
    • 2017
  • The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptor-mediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction.

Fecal Microbiota Profiling of Holstein and Jersey, in South Korea : A Comparative Study (국내에서 사육되는 Holstein 젖소과 Jersey 젖소의 대변 미생물 분석 : 비교연구)

  • Gwangsu Ha;Ji-Won Seo;Hee Gun Yang;Se Won Park;Soo-Young Lee;Young Kyoung Park;RanHee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.565-573
    • /
    • 2023
  • In light of the complex interactions between the host animal and its resident gut microbiomes, studies of these microbial communities as a means to improve cattle production are important. This study was conducted to analyze the intestinal microorganisms of Holstein (HT) and Jersey (JS), raised in Korea and to clarify the differences in microbial structures according to cattle species through next-generation sequencing. The alpha-diversity analysis revealed that most species richness and diversity indices were significantly higher in JS than in HT whereas phylogenetic diversity, which is the sum of taxonomic distances, is not significant. Microbial composition analysis showed that the intestinal microbial community structure of the two groups differed. In the both groups, a significant correlation was observed among the distribution of several microbes at the family level. In particular, a highly significant correlation (p<0.0001) among a variety of microbial distributions was found in JS. Beta-diversity analyis was to performed to statistically verify whether a difference exists in the intestinal microbial community structure of the two groups. Principal coordinate analysis and unweighted pair group method with arithmetic mean (UPGMA) clustering analysis showed separation between the HT and JS clusters. Meanwhile, permutational multivariate analysis of variance (PERMANOVA) revealed that their microbial structures are significantly different (p<0.0001). LEfSe biomarker analysis was performed to discover the differenc microbial features between the two groups. We found that several microbes, such as Firmicutes, Bacilli, Moraxellaceae and Pseudomonadales account for most of the difference in intestinal microbial community structure between the two groups.

Potential of Using Maize Cobs in Pig Diets - A Review

  • Kanengoni, A.T.;Chimonyo, M.;Ndimba, B.K.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1669-1679
    • /
    • 2015
  • The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.

Preparation and Dissolution of Polyvinylpyrrolidone(PVP)-Based Solid Dispersion Systems Containing Solubilizers (가용화 조성물을 함유한 PVP형 고체분산체의 제조 및 특성)

  • Cao, Qing-Ri;Kim, Tae-Wan;Choi, Choon-Young;Kwon, Kyoung-Ae;Lee, Beom-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • The PVP-based solid dispersion systems (SDs) containing lovastatin (LOS) and solubilizers (sodium lauryl sulfate, tween 80 and oleic acid) were prepared to enhance dissolution rate of practically water insoluble LOS using solvent evaporation method. Two different organic cosolvents either acetone/ethanol or acetonitrile/ethanol were used for the preparation of SDs. The LOS contents were highly decreased when acetone/ethanol cosolvents were used. The decrease of LOS contents was not caused by acetonitrile or acetone, based on HPLC data. The surface morphology as investigated by scanning electron microscope (SEM) and angle of repose as an index of flowability of SDs were highly dependent on the type and amount of solubilizers used. Based on differential scanning calorimetry (DSC) and X-ray powder diffraction data, the SDs made crystalline LOS into amorphous structure or partially eutectic mixtures. The simultaneous use of the solubilizers in SDs was also useful to increase dissolution rate of LOS in gastric or intestinal fluid. The SDs containing solubilizers reached 76% and 60% in gastric and intestinal fluid, respectively but the commercial tablet gave only less than 4%. These solubilizers in SDs could be also applicable for enhancing dissolution and bioavailability of poorly water-soluble drugs.

Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry

  • Choct, M.;Dersjant-Li, Y.;McLeish, J.;Peisker, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1386-1398
    • /
    • 2010
  • Soybean contains a high concentration of carbohydrates that consist mainly of non-starch polysaccharides (NSP) and oligosaccharides. The NSP can be divided into insoluble NSP (mainly cellulose) and soluble NSP (composed mainly of pectic polymers, which are partially soluble in water). Monogastric animals do not have the enzymes to hydrolyze these carbohydrates, and thus their digestion occurs by means of bacterial fermentation. The fermentation of soybean carbohydrates produces short chain fatty acids that can be used as an energy source by animals. The utilization efficiency of the carbohydrates is related to the chemical structure, the level of inclusion in the diet, species and age of the animal. In poultry, soluble NSP can increase digesta viscosity, reduce the digestibility of nutrients and depress growth performance. In growing pigs, these effects, in particular the effect on gut viscosity, are often not so obvious. However, in weaning piglets, it is reported that soy oligosaccharides and soluble NSP can cause detrimental effects on intestinal health. In monogastrics, consideration must be given to the anti-nutritive effect of the NSP on nutrient digestion and absorption on one hand, as well as the potential benefits or detriments of intestinal fermentation products to the host. This mirrors the needs for i) increasing efficiency of utilization of fibrous materials in monogastrics, and ii) the maintenance and improvement of animal health in antibiotic-free production systems, on the other hand. For example, ethanol/water extraction removes the low molecular weight carbohydrate fractions, such as the oligosaccharides and part of the soluble pectins, leaving behind the insoluble fraction of the NSP, which is devoid of anti-nutritive activities. The resultant product is a high quality soy protein concentrate. This paper presents the composition and chemical structures of carbohydrates present in soybeans and discusses their nutritive and anti-nutritive effects on digestion and absorption of nutrients in pigs and poultry.

Sulfoquinovosylmonoacylglycerols regulating intestinal inflammation in co-culture system from the brown alga Turbinaria ornata

  • Lee, Seon Min;Kim, Na-Hyun;Ji, Yeong Kwang;Kim, Yun Na;Jeon, You-Jin;Heo, Jeong Doo;Jeong, Eun Ju;Rho, Jung-Rae
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.201-212
    • /
    • 2020
  • The inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn disease are characterized by chronic inflammation throughout the gastrointestinal tract. The prevalence of IBD has been increasing worldwide, and has sometimes led to irreversible impairment of gastrointestinal structure and functions. In the present study, we identified a new sulfoquinovosylmonoacylglycerols (SQMG) (1) together with two known SQMGs (2 and 3) regulating intestinal inflammation from the brown alga Turbinaria ornata. The anti-inflammatory properties of two bioactive SQMGs, 1 and 2 were evaluated using an in vitro co-culture system consisting of human epithelial Caco-2 cells and PMA (phorbol 12-myristate 12-acetate)-differentiated THP-1 macrophages. Treatment with 1 or 2 inhibited the production nitric oxide and prostaglandin E2 induced by lipopolysaccharide and interferon γ challenge. The expressions of inducible nitric oxide synthase and cyclooxygenase 2 were markedly down-regulated in response to inhibition of nuclear factor κB translocation to nucleus. These findings suggest the potential use of the brown alga T. ornata and its biologically active metabolites SQMGs as pharmaceutical adjuvants in the treatment of inflammation-related diseases, including IBD.

Synthesis and Characterization of Novel pH-Sensitive Hydrogels Containing Ibuprofen Pen dents for Colon-Specific Drug Delivery

  • Mahkam, Mehrdad;Poorgholy, Nahid;Vakhshouri, Laleh
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.709-713
    • /
    • 2009
  • The aim of this study was to develop novel intestinal specific drug delivery systems with pH sensitive swelling and drug release properties. The carboxyl group of ibuprofen was converted to a vinyl ester group by reacting ibuprofen and vinyl acetate as an acylating agent in the presence of catalyst. The glucose-6-acrylate-1, 2, 3, 4-tetraacetate (GATA) monomer was prepared under mild conditions. Cubane-1, 4-dicarboxylic acid (CDA) linked to two 2-hydroxyethyl methacrylate (HEMA) group was used as the crosslinking agent (CA). Methacrylic-type polymeric prodrugs were synthesized by the free radical copolymerization of methacrylic acid, vinyl ester derivative of ibuprofen (VIP) and GATA in the presence of cubane cross linking agent. The structure of VIP was characterized and confirmed by FTIR, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The composition of the cross-linked three-dimensional polymers was determined by FTIR spectroscopy. The hydrolysis of drug polymer conjugates was carried out in cel-lophane membrane dialysis bags, and the in vitro release profiles were established separately in enzyme-free simulated gastric and intestinal fluids (SGF, pH 1 and SIF, pH 7.4). The detection of a hydrolysis solution by UV spectroscopy at selected intervals showed that the drug can be released by hydrolysis of the ester bond between the drug and polymer backbone at a low rate. Drug release studies showed that increasing the MAA content in the copolymer enhances the rate of hydrolysis in SIP. These results suggest that these polymeric prodrugs can be useful for the release of ibuprofen in controlled release systems.