Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.5.23

Sulfoquinovosylmonoacylglycerols regulating intestinal inflammation in co-culture system from the brown alga Turbinaria ornata  

Lee, Seon Min (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology)
Kim, Na-Hyun (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology)
Ji, Yeong Kwang (Department of Oceanography, Kunsan National University)
Kim, Yun Na (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Jeon, You-Jin (Department of Marine Life Sciences, Jeju National University)
Heo, Jeong Doo (Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology)
Jeong, Eun Ju (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
Rho, Jung-Rae (Department of Oceanography, Kunsan National University)
Publication Information
ALGAE / v.35, no.2, 2020 , pp. 201-212 More about this Journal
Abstract
The inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn disease are characterized by chronic inflammation throughout the gastrointestinal tract. The prevalence of IBD has been increasing worldwide, and has sometimes led to irreversible impairment of gastrointestinal structure and functions. In the present study, we identified a new sulfoquinovosylmonoacylglycerols (SQMG) (1) together with two known SQMGs (2 and 3) regulating intestinal inflammation from the brown alga Turbinaria ornata. The anti-inflammatory properties of two bioactive SQMGs, 1 and 2 were evaluated using an in vitro co-culture system consisting of human epithelial Caco-2 cells and PMA (phorbol 12-myristate 12-acetate)-differentiated THP-1 macrophages. Treatment with 1 or 2 inhibited the production nitric oxide and prostaglandin E2 induced by lipopolysaccharide and interferon γ challenge. The expressions of inducible nitric oxide synthase and cyclooxygenase 2 were markedly down-regulated in response to inhibition of nuclear factor κB translocation to nucleus. These findings suggest the potential use of the brown alga T. ornata and its biologically active metabolites SQMGs as pharmaceutical adjuvants in the treatment of inflammation-related diseases, including IBD.
Keywords
co-culture; inflammation; inflammatory bowel disease; sulfoquinovosylmonoacylglycerol; Turbinaria ornata;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Pan, M. -H., Hsieh, M. -C., Hsu, P. -C., Ho, S. -Y., Lai, C. -S., Wu, H., Sang, S. & Ho, C. -T. 2008. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 52:1467-1477.   DOI
2 Pettus, B., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., Chalfant, C. E., Obeid, L. M. & Hannun, Y. A. 2003. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and $PGE_{2}$ production in response to TNF-alpha. FASEB J. 17:1411-1421.   DOI
3 Rubas, W., Jezyk, N. & Grass, G. M. 1993. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113-118.   DOI
4 Saegusa, M., Hashimura, M. & Kuwata, T. 2010. Pin1 acts as a modulator of cell proliferation through alteration in $NF-{\kappa}B$ but not $\beta$-catenin/TCF4 signalling in a subset of endometrial carcinoma cells. J. Pathol. 222:410-420.   DOI
5 Sakamoto, B., Hokama, Y., Horgen, F. D., Scheuer, P. J., Kan, Y. & Nagai, H. 2000. Isolation of a sulfoquinovosyl monoacylglycerol from Bryopsis sp. (Chlorophyta): identification of a factor causing a possible species-specific ecdysis response in Gambierdiscus toxicus (Dinophyceae). J. Phycol. 36:924-931.   DOI
6 Sanjeewa, K. K. A., Fernando, I. P. S., Kim, S. -Y., Kim, W. -S., Ahn, G., Jee, Y. & Jeon, Y. -J. 2019. Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking $NF-{\kappa}B$ and MAPK pathways. Algae 34:45-56.   DOI
7 Sheu, J. H., Wang, G. H., Sung, P. J., Chiu, Y. H. & Duh, C. Y. 1997. Cytotoxic sterols from the formosan brown alga Turbinaria ornata. Planta Med. 63:571-572.   DOI
8 Vijayabaskar, P. & Shiyamala, V. 2011. Antibacterial activities of brown marine algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Adv. Biol. Res. 5:99-102.
9 Vijayabaskar, P. & Shiyamala, V. 2012. Antioxidant properties of seaweed polyphenol from Turbinaria ornata (Turner) J. Agardh, 1848. Asian Pac. J. Trop. Biomed. 2:S90-S98.   DOI
10 Wang, H. -M. D., Li, X. -C., Lee, D. -J. & Chang, J. -S. 2017. Potential biomedical applications of marine algae. Bioresour. Technol. 244:1407-1415.   DOI
11 Zubia, M., Payri, C. & Deslandes, E. 2008. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J. Appl. Phycol. 20:1033-1043.   DOI
12 Subash, A., Veeraraghavan, G., Sali, V. K., Bhardwaj, M. & Vasanthi, H. R. 2016. Attenuation of inflammation by marine alga Turbinaria ornata in cotton pellet induced granuloma mediated by fucoidan like sulphated polysaccharide. Carbohydr. Polym. 151:1261-1268.   DOI
13 Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. & Prinsep, M. R. 2013. Marine natural products. Nat. Prod. Rep. 30:237-323.   DOI
14 Abdella, E. M., Mahmoud, A. M. & El-Derby, A. M. 2016. Brown seaweeds protect against azoxymethane-induced hepatic repercussions through up-regulation of peroxisome proliferator-activated receptor gamma and attenuation of oxidative stress. Pharm. Biol. 54:2496-2504.   DOI
15 Aggarwal, B. B., Takada, Y., Shishodia, S., Gutierrez, A. M., Oommen, O. V., Ichikawa, H., Baba, Y. & Kuman, A. 2004. Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J. Exp. Biol. 42:341-353.
16 Alves, C., Silva, J., Pinteus, S., Gaspar, H., Alpoim, M. C., Botana, L. M. & Pedrosa, R. 2018. From marine origin to therapeutics: the antitumor potential of marine algaederived compounds. Front. Pharmacol. 9:777.   DOI
17 Ananthi, S., Gayathri, V., Malarvizhi, R., Bhardwaj, M. & Vasanthi, H. R. 2017. Anti-arthritic potential of marine macroalga Turbinaria ornata in Complete Freund′s Adjuvant induced rats. Exp. Toxicol. Pathol. 69:672-680.   DOI
18 Asari, F., Kusumi, T. & Kakisawa, H. 1989. Turbinaric acid, a cytotoxic secosqualene carboxylic acid from the brown alga Turbinaria ornata. J. Nat. Prod. 52:1167-1169.   DOI
19 Bouma, G. & Strober, W. 2003. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3:521-533.   DOI
20 Canoy, J. L. & Bitacura, J. G. 2018. Cytotoxicity and antiangiogenic activity of Turbinaria ornata Agardh and Padina australis Hauck ethanolic extracts. Anal. Cell Pathol. (Amst.) 2018:3709491.
21 Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P. & Pinto, E. 2007. Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 146:60-78.   DOI
22 Abraham, C. & Cho, J. H. 2009. Inflammatory bowel disease. N. Engl. J. Med. 361:2066-2078.   DOI
23 Chia, Y. Y., Kanthimathi, M. S., Khoo, K. S., Rajarajeswaran, J., Cheng, H. M. & Yap, W. S. 2015. Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC Complement. Altern. Med. 15:339.   DOI
24 Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K. B. & Dockrell, D. H. 2010. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5:e8668.   DOI
25 Fernando, I. P. S., Kim, K. -N., Kim, D. & Jeon, Y. -J. 2019. Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 39:99-113.   DOI
26 Deepak, P., Sowmiya, R., Balasubramani, G. & Perumal, P. 2017. Phytochemical profiling of Turbinaria ornata and its antioxidant and anti-proliferative effects. J. Taibah Univ. Med. Sci. 12:329-337.   DOI
27 Economou, J. S., Rhoades, K., Essner, R., McBride, W. H., Gasson, J. C. & Morton, D. L. 1989. Genetic analysis of the human tumor necrosis factor $\alpha$/cachectin promoter region in a macrophage cell line. J. Exp. Med. 170:321-326.   DOI
28 Faulkner, D. J. 2001. Marine natural products. Nat. Prod. Rep. 18:1-49.   DOI
29 Hanashima, S., Mizushina, Y., Yamazaki, T., Ohta, K., Takahashi, S., Sahara, H., Sakaguchi, K. & Sugawar, F. 2001. Synthesis of sulfoquinovosylacylglycerols, inhibitors of eukaryotic DNA polymerase $\alpha$ and $\beta$. Bioorg. Med. Chem. 9:367-376.   DOI
30 Hirao, S., Tara, K., Kuwano, K., Tanaka, J. & Ishibashi, F. 2012. Algicidal activity of glycerolipids from brown alga Ishiga sinicola toward red tide microalgae. Biosci. Biotechnol. Biochem. 76:372-374.   DOI
31 Jayawardena, T. U., Fernando, I. P. S., Lee, W. W., Sanjeewa, K. K. A., Kim, H. -S., Lee, D. -S. & Jeon, Y. -J. 2019. Isolation and purification of fucoidan fraction in Turbinaria ornata from the Maldives: inflammation inhibitory potential under LPS stimulated conditions in in-vitro and in-vivo models. Int. J. Biol. Macromol. 131:614-623.   DOI
32 Kampfer, A. A. M., Urban, P., Gioria, S., Kanase, N., Stone, V. & Kinsner-Ovaskainen, A. 2017. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol. In Vitro 45:31-43.   DOI
33 Loftus, E. V. Jr. & Sandborn, W. J. 2002. Epidemiology of inflammatory bowel disease. Gastroenterol. Clin. North Am. 312:1-20.   DOI
34 Kleiveland, C. R. 2015. Chapter 18: Co-culture Caco-2/immune cells. In Verhoeckx, K., Cotter, P., Lopez-Exposito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. & Wichers, H. (Eds.) The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer, Cham, pp. 135-140.
35 Lappas, M., Permezel, M., Georgiou, H. M. & Rice, G. E. 2002. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol. Reprod. 67:668-673.   DOI
36 Lennernas, H., Palm, K., Fagerholm, U. & Artursson, P. 1996. Comparison between active and passive drug transport in human intestinal epithelial (caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm. 127:103-107.   DOI
37 MacDermott, R. P. 1999. Chemokines in the inflammatory bowel diseases. J. Clin. Immunol. 19:266-272.   DOI
38 Oeckinghaus, A. & Ghosh, S. 2009. The $NF-{\kappa}B$ family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1:a000034.
39 Ogata, H. & Hibi, T. 2003. Cytokine and anti-cytokine therapies for inflammatory bowel disease. Curr. Pharm. Des. 9:1107-1113.   DOI