• Title/Summary/Keyword: Intestinal Growth

Search Result 591, Processing Time 0.027 seconds

Effect of Genotype on Whole-body and Intestinal Metabolic Response to Monensin in Mice

  • Fan, Y.K.;Croom, W.J.;Daniel, Linda;McBride, B.W.;Koci, M.;Havenstein, G.B.;Eisen, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.554-562
    • /
    • 2006
  • Two lines of mice, M16 selected for rapid growth and a randomly selected control ICR as well as their reciprocal crosses were used to study the effects of genotype on whole-body energetics and intestinal responses to monensin. Six mice, eight weeks of age, from each line or reciprocal cross were assigned to one of two treatments, 1) drinking water containing 20 mmol/L monensin dissolved in 0.5% V/V ethanol, and 2) drinking water containing 0.5% V/V ethanol (control) for two weeks. After 11 days (age of 9 weeks and 4 days), whole-body $O_2$ consumption was measured. At the end of two weeks, jejunal $O_2$ consumption, intestinal tissue composition and histomorphometrics as well as the rate and efficiency of glucose absorption were estimated. In comparison with the control, monensin administration in drinking water resulted in less daily water intake (13.4 vs. 15.5 ml/mouse, p<0.01), less protein to DNA ratio of jejunal mucosa (5.41 vs. 6.01 mg/mg, p<0.05), lower villus width (88 vs. $100{\mu}m$, p<0.05), and less jejunal tissue $O_2$ consumption enhancement by alcohol (7.2 vs. 10.5%, p<0.01) in mice. Other than those changes, monensin had little (p>0.05) effect on variables measured in either line of mice or their reciprocal cross. In contrast, the M16 line, selected for rapid growth, as compared to the ICR controls or the reciprocal crosses, had less initial (pre-monensin treatment) whole-body $O_2$ consumption per gram of body weight (1.68 vs. $2.11-2.34{\mu}mol/min{\cdot}g$ BW, p<0.01) as compared to the ICR and reciprocal crosses. In addition, the M16 mice exhibited greater growth (412 vs. 137-210 mg/d, p<0.05), better feed efficiency (41.7 vs. 19.9-29.3 mg gain/g feed, p<0.05), shorter small intestines adjusted for fasted body weight (1.00 vs. 1.22-1.44 cm/g FBW, p<0.05), wider villi (109 vs. $87-93{\mu}m$, p<0.05), more mature height of enterocytes (28.8 vs. $24.4-25.1{\mu}m$, p<0.05) and a lower rate (91 vs. $133-145{\eta}mol\;glucose/min{\cdot}g$ jejunum, p<0.05) and less energetic efficiency (95 vs. $59-72{\eta}mol$ ATP expended/${\eta}mol$ glucose uptake, p<0.05) of glucose absorption compared to the ICR line and the reciprocal cross. Monensin had little (p>0.05) effect on whole-body $O_2$ consumption and jejunal function, whilst selection for rapid growth resulted in an apparent down-regulation of intestinal function. These data suggest that genetic selection for increased growth does not result in concomitant changes in intestinal function. This asynchrony in the selection for production traits and intestinal function may hinder full phenotypic expression of genotypic growth potential.

Inhibitory Effects of Quinizarin Isolated from Cassia tora Seeds Against Human Intestinal Bacteria and Aflatoxin $B_1$ Biotransformation

  • Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.529-536
    • /
    • 2003
  • The growth-inhibitory activity of Cassia tora seed-derived materials against seven intestinal bacteria was examined in vitro, and compared with that of anthraquinone, anthraflavine, anthrarufin, and 1-hydroxyanthraquinone. The active constituent of C. tore seeds was characterized as quinizarin, using various spectroscopic analyses. The growth responses varied depending on the compound, dose, and bacterial strain tested. At 1 mg/disk, quinizarin exhibited a strong inhibition of Clostridium perfringens and moderate inhibition of Staphylococcus aureus without any adverse effects on the growth of Bifidobacterium adolescentis, B. bifidum, B. longum, and Lactobacillus casei. Furthermore, the isolate at 0.1 mg/disk showed moderate and no activity against C. perfringens and S. aureus. The structure-activity relationship revealed that anthrarufin, anthraflavine, and quinizarin moderately inhibited the growth of S. aureus. However. anthraquinone and 1-hydroxyanthraquinone did not inhibit the human intestinal bacteria tested. As for the morphological effect of 1 mg/disk quinizarin, most strains of C. perfringens were damaged and disappeared, indicating that the strong activity of quinizarin was morphologically exhibited against C. perfringens. The inhibitory effect on aflatoxin $B_1$ biotransformation by anthraquinones revealed that anthrarufin ($IC_50,\;11.49\mu\textrm{M}$) anthraflavine ($IC_50,\;26.94\mu\textrm{M}$), and quinizarin ($IC_50,\;4.12\mu\textrm{M}$), were potent inhibitors of aflatoxin ${B_1}-8,9-epoxide$ formation. However, anthraquinone and 1-hydroxyanthraquinone did not inhibit the mouse liver microsomal sample to convert aflatoxin $B_1$ to aflatoxin ${B_1}-8,9-epoxide$. These results indicate that the two hydroxyl groups on A ring of anthraquinones may be essential for inhibiting the formation of aflatoxin ${B_1}-8,9-epoxide$. Accordingly, as naturally occurring inhibitory agents, the C. tora seed-derived materials described could be useful as a preventive agent against diseases caused by harmful intestinal bacteria, such as clostridia, and as an inhibitory agent for the mouse liver microsomal conversion of aflatoxin $B_1$ to aflatoxin ${B_1}-8,9-epoxide$.

Bifidogenic Effects of Yaksun (functional herbal) Food Materials (약선식품소재의 유산균 증식 효과)

  • 배은아;한명주
    • Korean journal of food and cookery science
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • The objective of this study was to evaluate the effect of functional herbal foods on the growth of intestinal lactic acid bacteria. When Bifidobacterium breve and human intestinal microflora were inoculated in the general anaerobic medium which contained each functional food water extract, most of functional herbal foods induced the growth of lactic acid bacteria by decreasing pH of the broth. The pH decreasing effects of Liriipe platyphylla and Platycodon grandiflorum were excellent. The growth of lactic acid bacteria effectively inhibited the bacterial enzymes, $\beta$-glucosidase and $\beta$ -glucuronidase. Eugenia caryophyllata and Liriipe platyphylla potently inhibited the productivity of P -glucosidase of B. breve and human intestinal bacteria. Cinnamomum cassia, Gardenia jasminoides and Platycodon grandiflorum potently inhibited the productivity of $\beta$-glucuronidase of human intestinal bacteria. The growth component isolated from Platycodon grandiflorum was sucrose (compound B).

  • PDF

The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment

  • Law, Fang Lin;Zulkifli, Idrus;Soleimani, Abdoreza Farjam;Liang, Juan Boo;Awad, Elmutaz Atta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1291-1300
    • /
    • 2018
  • Objective: This experiment was conducted to investigate the effects of dietary crude protein (CP) level and exogenous protease supplementation on growth performance, serum metabolites, carcass traits, small intestinal morphology and endogenous protease activity in broiler chickens reared under a tropical climate. Methods: A total of 480 day-old male broiler chicks were randomly assigned to eight dietary treatments in a $4{\times}2$ factorial arrangement. The main effects were CP level (21.0%, 19.7%, 18.5%, or 17.2% from 1 to 21 days and 19.0%, 17.9%, 16.7%, or 15.6% from 22 to 35 days) and protease enzyme supplementation (0 ppm or 500 ppm). All experimental diets were fortified with synthetic feed-grade lysine, methionine, threonine and tryptophan to provide the minimum amino acid recommended levels for Cobb 500. Results: Reducing dietary CP linearly reduced (p<0.05) growth performance, serum albumin, total protein, and carcass traits and increased (p<0.05) serum triglycerides and abdominal fat. There was no consistent effect of reducing dietary CP on morphological parameters of the intestine and on the pancreatic and intestinal endogenous protease activity (p>0.05). Protease supplementation improved (p<0.05) feed conversion ratio, body weight gain, carcass yield and intestinal absorptive surface area. Conclusion: Protease supplementation, as measured by growth performance, intestinal morphology and carcass yield, may alleviate the detrimental effects of low protein diets in broiler chickens.

Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli

  • Sayan, Harutai;Assavacheep, Pornchalit;Angkanaporn, Kris;Assavacheep, Anongnart
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1308-1314
    • /
    • 2018
  • Objective: Gut health improvements were monitored with respect to growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs orally supplemented with live Lactobacillus salivarius (L. salivarius) oral suspensions and challenged with $F4^+$ enterotoxigenic Escherichia coli (ETEC). Methods: Two groups of newborn pigs from 18 multiparous sows were randomly designated as non-supplemented (control: n = 114 piglets) and L. salivarius supplemented groups (treatment: n = 87 piglets). Treatment pigs were orally administered with 2 mL of $10^9$ colony-forming unit (CFU)/mL L. salivarius on days 1 to 3, then they were orally administered with 5 mL of $10^9CFU/mL$ L. salivarius on days 4 to 10, while those in control group received an equal amount of phosphate buffered saline solution. On day 24 (2 weeks post supplementation), one pig per replicate of both groups was orally administered with $10^8CFU/mL$ $F4^+$ ETEC, then they were euthanized on day 29 of experiment. Results: Results revealed that pigs in treatment group had a statistically significant increase in average daily gain, body weight and weight gain, and tended to lower diarrhea throughout the study. Numbers of Lactobacillus population in feces of treatment pigs were higher than control pigs, especially on day 10 of study. Numbers of total bacteria in intestinal contents of control pigs were also increased, but not Coliform and Lactobacillus populations. Histological examination revealed statistically significant improvements of villous height and villous/crypt ratio of duodenum, proximal jejunum and distal jejunum parts of treatment pigs compared with controls. Duodenal pH of treatment group was significantly decreased. Conclusion: Oral supplementation of live L. salivarius during the first 10 days of suckling pig promoted growth performance and gut health, reduced diarrhea incidence, increased fecal Lactobacillus populations and improved intestinal morphology.

The Prevention of Gut Microbiome and Intestinal Diseases from Supercritical Heat-treated Radish Complex Extracts (초임계 열처리된 무 복합추출물의 장내세균총 및 장질환 예방 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.421-429
    • /
    • 2019
  • The purpose of this study was to investigate the effects of intestinal bacteria on the growth of enteric bacteria, especially infectious harmful bacteria such as food poisoning, gastritis and enteritis, and the growth of beneficial bacteria. By dividing the rat into three test groups; normal control group, Loperamide-treated group, and supercritical heat-treated radish complex extracts(HRE)-treated group, animal experiments were performed to inhibit the growth of harmful bacteria without affecting the growth of beneficial bacteria in the intestine. It was found that it can be usefully used as an effective and safe health food composition for improving intestinal function and bacterial intestinal disease. In particular, it can be concluded that supercritical heat-treated radish complex extract is a safe food that does not show any side effects even when taken for a long time.

Depressed Neuronal Growth Associated Protein (GAP)-43 Expression in the Small Intestines of Mice Experimentally Infected with $Neodiplostomum$ $seoulense$

  • Pyo, Kyoung-Ho;Kang, Eun-Young;Jung, Bong-Kwang;Moon, Jung-Ho;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.89-93
    • /
    • 2012
  • $Neodiplostomum$ $seoulense$ (Digenea: Neodiplostomidae) is an intestinal trematode that can cause severe mucosal pathology in the small intestines of mice and even mortality of the infected mice within 28 days after infection. We observed neuronal growth associated protein-43 (GAP-43) expression in the myenteric plexus of the small intestinal wall of $N.$ $seoulense$-infected mice until day 35 post-infection (PI). BALB/c mice were infected with 200 or 500 $N.$ $seoulense$ metacercariae isolated from naturally infected snakes and were killed every 7 days for immunohistochemical demonstration of GAP-43 in the small intestines. $N.$ $seoulense$-infected mice showed remarkable dilatation of intestinal loops compared with control mice through days 7-28 PI. Conversely, GAP-43 expression in the mucosal myenteric plexus was markedly ($P$<0.05) reduced in the small intestines of $N.$ $seoulense$-infected mice during days 7-28 PI and was slightly normalized at day 35 PI. From this study, it is evident that neuronal damage occurs in the intestinal mucosa of $N.$ $seoulense$-infected mice. However, the correlation between intestinal pathology, including the loop dilatation, and depressed GAP-43 expression remains to be elucidated.

The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers

  • Aliakbarpour, H.R.;Chamani, Mohammad;Rahimi, G.;Sadeghi, A.A.;Qujeq, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1285-1293
    • /
    • 2012
  • The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (p<0.05). Inclusion of Bacillus subtilis based probiotic in the diets also significantly affected feed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal cell proliferation and consequently efficient nutrient absorption.

Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs

  • Mun, Daye;Kyoung, Hyunjin;Kong, Myunghwan;Ryu, Sangdon;Jang, Ki Beom;Baek, Jangryeol;Park, Kyeong Il;Song, Minho;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1314-1327
    • /
    • 2021
  • Bacillus is characterized by the formation of spores in harsh environments, which makes it suitable for use as a probiotic for feed because of thermostability and high survival rate, even under long-term storage. This study was conducted to investigate the effects of Bacillus-based probiotics on growth performance, nutrient digestibility, intestinal morphology, immune response, and intestinal microbiota of weaned pigs. A total of 40 weaned pigs (7.01 ± 0.86 kg body weight [BW]; 28 d old) were randomly assigned to two treatments (4 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW and sex). The dietary treatment was either a typical nursery diet based on corn and soybean meal (CON) or CON supplemented with 0.01% probiotics containing a mixture of Bacillus subtilis and Bacillus licheniformis (PRO). Fecal samples were collected daily by rectal palpation for the last 3 days after a 4-day adaptation. Blood, ileal digesta, and intestinal tissue samples were collected from one pig in each pen at the respective time points. The PRO group did not affect the feed efficiency, but the average daily gain was significantly improved (p < 0.05). The PRO group showed a trend of improved crude protein digestibility (p < 0.10). The serum transforming growth factor-β1 level tended to be higher (p < 0.10) in the PRO group on days 7 and 14. There was no difference in phylum level of the intestinal microbiota, but there were differences in genus composition and proportions. However, β-diversity analysis showed no statistical differences between the CON and the PRO groups. Taken together, Bacillus-based probiotics had beneficial effects on the growth performance, immune system, and intestinal microbiota of weaned pigs, suggesting that Bacillus can be utilized as a functional probiotic for weaned pigs.

Effects of Potato Protein on the Growth of Clostridium perfiringens and Other Intestinal Microorganisms (감자 단백질이 Clostridium perfringens 및 주요 장내 미생물의 생육에 미치는 영향)

  • 신현경;신옥호;구영조
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.249-256
    • /
    • 1992
  • Potato juice was found out to have a strong inhibition activity on the growth of Clostridium perf;nngens during work of foodstuffs for the improvement of human intestinal microflora. The anti-bacterial activity of the precipitated protein obtained from the potato juice in 70% ammonium sulfate solution was stable at the range of pH 4 to 10, whereas it was lost by a heat treatment at $60^{\circ}C$ for 10 min. The minimal inhibitory concentration of the precipitated protein on the growth of C1. Pefingens was about 0.2 mg/ml. The potato protein also suppressed the growth of C1. butyrincm and Eubacterium iimosum, while it showed a promoting effect for the growth of Bifdobacterium bifidum, Bif: animalis, Lactobacillus plantarum and Lact. acidophitus. The potato protein was further purified by CM-Sepharose ion exchange column chromatography, Sephadex G-150 gel filtration column chromatography and SDS-polyacrylarnide gel electrophoresis. The purified protein(kCp) was proved to be a glycoprotein by PAS staining and its molecular weight was about 38.7 kd.

  • PDF