• Title/Summary/Keyword: Intestinal Growth

Search Result 591, Processing Time 0.026 seconds

Effects of Cu (II)-exchanged Montmorillonite on Growth Performance, Intestinal Microflora, Bacterial Enzyme Activities and Morphology of Broilers

  • Xu, Z.R.;Ma, Y.L.;Hu, C.H.;Xia, M.S.;Guo, T.;Jin, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1673-1679
    • /
    • 2003
  • Two hundred forty 1-d-old Arbor Acres broiler chicks were used to investigate the effects of Cu (II)-exchanged montmorillonite (CEM) or montmorillonite on the growth performance, intestinal microflora, bacterial enzyme activities and morphology of broilers. The chicks were assigned randomly into three groups with 80 chicks per treatment. The three dietary treatments were basal diet only (control group), basal diet +1 g $kg^{-1}$ montmorillonite, and basal diet +1 g $kg^{-1}$ CEM. The results showed that the addition of CEM to the diet increased significantly the body weight and feed efficiency, but a similarly significant increase was not found in broilers fed the diet containing montmorillonite. Supplementing the CEM in the diet of broilers also decreased the numbers of Clostridium perfringens and Escherichia coli in the small intestine and cecum. The addition of either CEM or montmorillonite to the diet depressed the activities of $\beta$-glucosidase and $\beta$-glucuronidase in the small intestinal and cecal contents. Data of villus height and crypt depth for duodenum, jejunum and ileum indicated that dietary addition of CEM or montmorillonite improved the small intestinal mucosal morphology.

Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet

  • Ren, M.;Zhang, S.H.;Zeng, X.F.;Liu, H.;Qiao, S.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1742-1750
    • /
    • 2015
  • As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets ($7.96{\pm}0.26kg$) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

Comparative Effects of Sodium Gluconate, Mannan Oligosaccharide and Potassium Diformate on Growth Performances and Small Intestinal Morphology of Nursery Pigs

  • Poeikhampha, T.;Bunchasak, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.844-850
    • /
    • 2011
  • This study was conducted to compare the effects of dietary supplementation of Sodium Gluconate (SG), Mannan Oligosaccharide (MOS) and Potassium Diformate (PDF) on growth performance and small intestinal morphology in nursery piglets. One hundred forty four female piglets ($11.69{\pm}0.71\;kg$) were divided into 4 treatments with six replicates of six pigs each. The pigs received a control diet or diets supplemented with SG, MOS and PDF at 2,500, 3,000 and 8,000 ppm; respectively, for 6 weeks. Supplementation of SG, MOS or PDF increased final body weight, average daily gain and tended to improve feed to gain ratio (p = 0.02, 0.04 and 0.16; respectively), other than average daily feed intake, intestinal pH and the bacterial populations were not influenced by the dietary treatments. SG significantly decreased the ammonia concentration in the caecum (p<0.05) and supplementation of SG, MOS or PDF tended to increase lactic acid and total short chain fatty acid concentration in the caecum (p = 0.08, 0.09; respectively), in addition SG, MOS or PDF slightly increased butyric acid concentration in the caecum (p = 0.14). SG highly significant increased the villous height in jejunum (p<0.01) and supplementing SG, MOS or PDF significantly increased crypt depth in jejunum (p<0.05), moreover, PDF significantly increased villous height and crypt depth ratio in jejunum (p<0.05) compared with control. The dietary treatments did not influence villous height and crypt depth in duodenum and villous height in jejunum (p>0.05). It can be concluded that supplementing SG, MOS or PDF as a feed additive has the potential to improve the growth performance, the intestinal lactic acid bacteria population, intestinal short-chain fatty acid concentration and the intestinal morphology of pigs.

Physiological Effects of Levanoligosaccharide on Growth of Intestinal Microflora (Levanoligosaccharide의 장내미생물의 생육에 미치는 생리효과)

  • 이태호;강수경;박수제;이재동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.35-40
    • /
    • 2000
  • The effect of levanheptaose produced by levanase from Streptomyces sp. 366L on principle intestinal microflora was investigated. The reaction product, levanheptaose, was used as a carbon source for various intestinal microflora. As a results, Bifidobacterium adolescentis, Lactobacillus acidophilus, and Eubacterium limosum grew effectively in the in vitro experiment, whereas Clostridium perfringens, E. coli, and Staphylococcus aureus did not. Therefore levanheptaose seems to promote selectively the growth of B. adolescentis and L. acidophilus. In the in vivo experiment, the effect of levanheptaose on the growth of intestinal microflora, $\beta$-fructosidase activity, pH, and butyrate concentration were examined in rats. Apparently, the number of fecal Bifidobacteria, the amount of butyrate, and $\beta$-fructosidase activity were increased, whereas total aerobes and pH were reduced in rats fed by levanheptaose diets, compared with those of control diets. We concluded that those effects may be beneficial in improving gastrointestinal health.

  • PDF

Short Bowel Syndrome as the Leading Cause of Intestinal Failure in Early Life: Some Insights into the Management

  • Goulet, Olivier;Nader, Elie Abi;Pigneur, Benedicte;Lambe, Cecile
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.4
    • /
    • pp.303-329
    • /
    • 2019
  • Intestinal failure (IF) is the critical reduction of the gut mass or its function below the minimum needed to absorb nutrients and fluids required for adequate growth in children. Severe IF requires parenteral nutrition (PN). Pediatric IF is most commonly due to congenital or neonatal intestinal diseases or malformations divided into 3 groups: 1) reduced intestinal length and consequently reduced absorptive surface, such as in short bowel syndrome (SBS) or extensive aganglionosis; 2) abnormal development of the intestinal mucosa such as congenital diseases of enterocyte development; 3) extensive motility dysfunction such as chronic intestinal pseudo-obstruction syndromes. The leading cause of IF in childhood is the SBS. In clinical practice the degree of IF may be indirectly measured by the level of PN required for normal or catch up growth. Other indicators such as serum citrulline have not proven to be highly reliable prognostic factors in children. The last decades have allowed the development of highly sophisticated nutrient solutions consisting of optimal combinations of macronutrients and micronutrients as well as guidelines, promoting PN as a safe and efficient feeding technique. However, IF that requires long-term PN may be associated with various complications including infections, growth failure, metabolic disorders, and bone disease. IF Associated Liver Disease may be a limiting factor. However, changes in the global management of IF pediatric patients, especially since the setup of intestinal rehabilitation centres did change the prognosis thus limiting "nutritional failure" which is considered as a major indication for intestinal transplantation (ITx) or combined liver-ITx.

Effects of Edible Herbs on the Growth of In Vitro Intestinal Microorganisms (산채류가 장내세균의 In Vitro 생육에 미치는 영향)

  • 한복진
    • Journal of Nutrition and Health
    • /
    • v.27 no.7
    • /
    • pp.717-728
    • /
    • 1994
  • This study was aimed to screen edible herbs which control the composition of intestinal microflora. With in vitro experiments, we screened the water or ethanol extracts of about 60 edible herbs and wild plants in terms of the inhibition activity on the growth of the harmful Clostridium perfringens and growth promoting activity for the beneficial Bifidobacteria. The water extracts of mugwort and small water dropwort inhibited the growth of Cl.perfringens both in agar diffusion method and broth culture. On the other hand, the water extracts of petasites, mugwort, yellow day-lily and bitter cress have shown the promotion effect on the growth of Bifidobacterium longum. In the culture test using human feces as starter, the extracts of the above selected herbs increased the population of Bifidobacteria and Lactobacillus while they reduced the numbers of Cl.perfringens and E.coli.

  • PDF

Rapid Detection of Growth factors of intestinal Lactic Acid Bacteria (장내유산균 증식인자의 신속한 검색)

  • 한명주;임혜영;김동현
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.2
    • /
    • pp.91-95
    • /
    • 1993
  • The growth of Bifidobacterium and Lactobacillus isolated from human interstinal bacteria were induced by water extract and U-step extract of soybean and carrot and the pH of these bacteria-cultured media were decreased. The increasing growth rates of these bacteria are related to the decrease of the pH of these bacteria-cultured media. When human intestinal flora as starter were inoculated into the medium containing water extract of soybean and carrot. the growth of lactic bacteria were also induced and the pH of the media were decreased. By measuring the pH of the media which were inoculated and cultured intestinal bacteria as a starter, it is possible to determine whether the food are the growth factors of intestinal lactic acid bacteria or not. By this method, the food which decreased pH of the medium were soybean, turnip, carrot. leek, garic, dropwork, wonnwood and onion. 'These foods may induce lactic acid bacteria in human in1estlne.

  • PDF

Antimicrobial Activity of Herbs with Treatments of Intestinal Diseases against intestinal Pathogens (장내 질환의 치료와 관련된 한약재의 장내 유해세균에 대한 항균 활성)

  • 이갑상;김성효;김선숙;박성수;전주연;신용서
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.1
    • /
    • pp.31-35
    • /
    • 1998
  • In this study, we investigated the antimicrobial activity of herbs related with treatments of intestinal diseases against intestinal pathogens under anaerobic broth system. The water extract of Saussurea lappa Clarke and Myristica fragrans Houtt. showed no growth inhibition against tested pathogens(Eubacterium limonsum ATCC 10825, Escherichia coli ATCC 25922, Bacteroides fragilis KCTC 5013, Clostridium perfringens STCC 3627, Staphylococcus aureus KFCC 11764 및 Salmonella typhimurium ATCC 14028). All tested pathogens were not inhibited in broth containing 100$\mu\textrm{g}$/$m\ell$ of Areca catachu L. Water extract but its extract strongly inhibited the growth of Eubacterium limonsum STCC 10825, Bacteroides fragilis KCTC 5013, Clostridium perfringens ATCC 3627 and Salmonella typhimurium ATCC 14028 at 1,000 to 2,000$\mu\textrm{g}$/$m\ell$ of concentration. Escherichia coli ATCC 25922 and Staphylococcus aureus KFCC 11764 hardly grew in broth containing 2,000$\mu\textrm{g}$/$m\ell$ of Terminalia chebula Retz. water extract.

  • PDF

Growth Responses of seven Intestinal Bacteria Against Phellodendron amurense Root-Derived Materials

  • Kim, Min-Jeong;Lee, Sang-Hyun;Cho, Jang-Hee;Kim, Moo-Key;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • The growth responses of Phellodendron amurense root-derived materials against seven intestinal bacteria were examined, using an impregnated paper disk agar diffusion method and spectrometric method under $O_2$-free condition. The biologically active constituent of the P. amurense root extract was characterized as berberine chloride ($C_{20}H_{18}NO_{41}Cl$) using various spectroscopic analyses. The growth responses varied depending on the bacterial strain, chemicals, and dose tested. At 1 mg/disk, berberine chloride strongly inhibited the growth of Clostridium perfringens, and moderately inhibited the growth of Escherichia coli and Streptococcus mutans without any adverse effects on the growth of three lactic acid-bacteria (Bifidobacterium bifidum, B. longum, and Lactobacillus acidophilus). The structure-activity relationship revealed that berberine chloride exhibited more growth-inhibiting activity against C. perfringens, E. coli, and S. mutans than berberine iodide and berberine sulfate. These results, therefore, indicate that the growth-inhibiting activity of the three berberines was much more pronounced as chloridated analogue than iodided and sulphated analogues. As for the morphological effect caused by 1 mg/disk of berberine chloride, most strains of C. perfringens were damaged and killed, indicating that berberine chloride showed a strong inhibition against C. perfringens. As naturally occurring growth-inhibiting agents, the P. amurense root-derived materials described could be useful as a preventive agent against diseases caused by harmful intestinal bacteria such as clostridia.

Effect of Mushrooms on the Growth of Intestinal Lactic Acid Bacteria (버섯의 장내 유산균 증식 효과)

  • Han, M.J.;Bae, E.A.;Rhee, Y.K.;Kim, D.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.947-952
    • /
    • 1996
  • The objective of this study was to evaluate the effect of mushrooms on the growth of intestinal lactic acid bacteria. Bifidobacterium breve and the total intestinal flora of human and rats were inoculated in the general anaerobic medium which contained each mushroom water extract. Except Pleurotus ostreatus and Flammulina velutipes, the mushroom extracts induced the growth of lactic acid bacteria by decreasing pH of the broth. The pH decreasing effect was excellent especially with Lentinus edodes, Agarocus bisporus and Coriorus versicolor. This effect was due to the increase in the number of Bifidobacterium in the intestinal bacterid. This growth of lactic acid bacteria effectively inhibited the bacterial enzymes, ${\beta}-glucosidase,\;{\beta}-glucuronidase$ and tryptophanase, of intestinal bactetria.

  • PDF