시점기반 복합 이벤트 처리는 각 이벤트에 하나의 타임스탬프를 사용하여 즉각적인 이벤트를 처리한다. 하지만, 시점기반의 이벤트 처리로는 이벤트의 활동 기간이 중요한 역할을 하는 금융, 멀티미디어, 의학, 기상학 같은 분야에서 복합적인 시제 관계를 표현하기에는 불충분하다. 실세계의 애플리케이션 분야에서, 이벤트는 기간을 가지며, 두 종류 이상의 이벤트는 시간적으로 겹쳐질 수도 있고, 하나의 이벤트가 다른 이벤트를 포함할 수도 있다. 이런 종류의 이벤트들에 대한 관계는 시점기반 이벤트처럼 연속적이지 않을 수도 있다. 본 논문에서는 기간기반 이벤트를 사용하여 복합 이벤트의 패턴을 검출하는 방법을 설계하고 구현한다. 기간기반 이벤트는 시점기반 이벤트가 다룰 수 없는 이벤트들 사이의 겹침과 포함관계를 표현할 수 있다. 기간기반 이벤트 연산자는 시작 끝점과 종료 끝점을 사용하여 이벤트의 기간을 나타내고, 기간기반 이벤트의 시퀀스를 표현하여 복합 이벤트 패턴을 검출할 수 있다. 본 논문에서는 복합 이벤트 패턴 검출의 효율성을 높이기 위해 활성 인스턴스 스택을 사용하는 알고리즘을 제시하며, 이벤트의 시퀀스를 구성할 때 중간 결과의 개수를 줄이기 위해 윈도우 푸시다운 기법을 적용하여 수행시간과 메모리의 효율을 높인다.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.481-487
/
2000
When we construct an interval estimate of two independent proportions with rare events, the standard approach based on the normal approximation behaves badly in many cases. The problem becomes more severe when no success observations are observed on both groups. In this paper, we compare two alternative methods of constructing a confidence interval of the difference of two independent proportions by use of simulation. One is based on the profile likelihood and the other is the Bayesian probability interval. It is shown in this paper that the Bayesian interval estimator is easy to be implemented and performs almost identical to the best frequentist's method -the profile likelihood approach.
Epidemiologic studies frequently try to estimate the impact of a specific risk factor. The risk difference and the risk ratio are generally useful measurements for this purpose. When using such measurements for rare events, the standard approaches based on the normal approximation may fail, in particular when no events are observed. In this paper, we discuss and evaluate several existing methods to construct confidence intervals around risk differences and risk ratios using Monte-Carlo simulations when the disease of interest is rare. The results in this paper provide guidance how to construct interval estimates of the risk differences and the risk ratios when no events are detected.
기존의 순차 패턴 마이닝 기법은 주로 시점 기반 이벤트를 중심으로 연구되었다. 그러나 실생활에는 시작 시점과 종료 시점과 같은 시간 간격을 갖는 인터벌 이벤트가 많이 발생한다. Allen 연산자를 기반으로 두 인터벌 이벤트 사이의 인터벌 패턴을 탐사하는 기존의 기법은 세 개 이상의 인터벌 이벤트 사이에서 인터벌 패턴이 여러 의미로 해석될 수 있는 문제점을 가지고 있다. 이 논문은 인터벌 패턴 탐사에서 모호성 제거를 위한 효율적인 순차 탐색 마이닝 기법인 I_TPrefixSpan 알고리즘을 제안한다. 제안하는 기법은 인터벌 이벤트에 대한 이벤트 시퀀스를 생성함으로써 모호성을 제거하고 이벤트 시퀀스에 존재하는 항목만을 대상으로 순차 탐색함으로써 후보 집합 생성을 최소화 할 수 있다. 성능 평가를 통하여 제안하는 방법이 기존의 방법에 비하여 보다 효율적임을 보인다.
시간 속성을 갖는 이벤트 집합에서 동일한 이벤트 타입에 대한 이벤트 시퀀스는 하나의 이벤트로 요약될 수 있다. 그러나 정의된 시간 간격이 경과된 후 발생된 이벤트 타입은 하나 이상의 독립된 서브 이벤트 시퀀스로 요약하는 것이 바람직하다. 본 논문은 Allen의 시간 관계 대수에 기반하여 인터벌 이벤트를 요약하고, 요약된 인터벌 이벤트들로부터 인터벌 연관 규칙을 찾아내는 새로운 시간 데이터 마이닝 기법을 제안한다. 제안하는 기법은 독립적인 서브 시퀀스 개념을 도입하고 인터벌 이벤트 사이의 연관 규칙을 탐사함으로써 질적으로 우수한 정보를 제공한다.
A temporal database systems provides timing information and maintains history of data compared to the conventional database system. In this paper, we present a temporal relational database which use an interval-stamping method for instant-based events and for interval-based states. A set of temporal algebraic operators are developed on an instance of time and interval of time so that we can manipulate events and states at a same time. The set of operation is the basis for creating a relational algebra that is closed for temporal relations. And temporal SQL is also suggested as a temporal query relational language for our algebraic operations on temporal relations.
Communications for Statistical Applications and Methods
/
제11권1호
/
pp.181-187
/
2004
One of objectives in epidemiologic studies is to detect the amount of change caused by a specific risk factor. Risk ratio is one of the most useful measurements in epidemiology. When we perform the inference for this measurement with rare events, the standard approach based on the normal approximation may fail, in particular when there are no disease cases observed. In this paper, we discuss and evaluate several existing methods for constructing a confidence interval of risk ratio through simulation when the disease of interest is a rare event. The results in this paper provide guidance with how to construct interval estimates for risk difference and risk ratio when there are no disease cases observed.
이벤트는 환자의 증상과 같은 시간 속성을 갖는 흐름을 의미하며 센서를 통하여 수집된 스트림 데이터는 시작과 종료 시점을 갖는 인터벌 이벤트로 요약 가능하다. 그러나 대부분의 시간 마이닝 기법은 빈발 이벤트만을 고려하며, 빈발하지 않는 이벤트는 중요하더라도 제외되는 문제가 있다. 이 논문에서는 다차원 스트림 데이터 환경에서 인터벌 이벤트에 기초하여 의미있는 시간 관계에 대한 연관 규칙 마이닝 기법을 제안한다. 제안 방법은 이벤트 가중치와 이상 이벤트가 감지된 시점의 스트림 데이터만 고려하여 이벤트의 발생 횟수에 상관없이 의미있는 시간 관계에 대한 연관 규칙을 탐사한다. 그리고 성능 평가를 통하여 제안 방법이 기존의 방법에 비하여 보다 유용한 지식을 탐사함을 보인다.
An ATMS(Assumption-based Truth Maintenance System) has been widely used for maintaining the truth of information by detecting and solving contradictions in nile-based systems. But the ATMS can not correctly maintain the truth of the information in case that the generated information is satisfied within a time interval or includes data about temporal relations of events in time varying situations, because it has no mechanism manipulating temporal data. In this paper, The extended ATMS method is proposed, which can maintain the truth of the information in the inference system using information changing over time or temporal relations of events. In order to maintain contexts generated by relations of events, the label representation method is modified, the disjunction, conjunction simplification method in the label-propagation procedure and nogood handling method of the conventional ATMS are modified, too.
이벤트는 환자의 증상과 같이 시간 속성을 갖는 하나의 흐름을 의미하며 인터벌 이벤트는 시작과 종료 시점에 대한 시간 간격을 갖는다. 그리고 시간 데이터마이닝에 대한 많은 연구가 있었지만 환자 이력, 구매자 이력, 로그 이력과 같은 인터벌 이벤트에 대한 지식 탐사 방법에 대한 연구는 미흡하다. 이 논문에서는 이벤트들의 인과 관계에 대한 연관 규칙을 탐사하고 이 규칙에 기반하여 결과 이벤트 발생을 예측하는 시간 데이터마이닝 방법을 제안한다. 제안 방법은 이벤트 시간 속성을 사용하여 인터벌 이벤트로 요약하고 이벤트들의 인과 관계를 탐사하여 이벤트 발생을 예측한다. 성능평가를 통하여 제안 방법은 다양한 지지도를 적용하여 발생 빈도에 상관없이 이벤트 발생에 높은 영향을 주는 의미있는 희소 관계를 발견함으로써 기존의 데이터마이닝 기법에 비하여 보다 우수한 정보를 탐사할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.