• Title/Summary/Keyword: Interval prediction

Search Result 411, Processing Time 0.027 seconds

A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe (결측 택시 Probe 통행속도 예측기법 개발에 관한 연구)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.43-50
    • /
    • 2011
  • The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.

Balanced Accuracy and Confidence Probability of Interval Estimates

  • Liu, Yi-Hsin;Stan Lipovetsky;Betty L. Hickman
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2002
  • Simultaneous estimation of accuracy and probability corresponding to a prediction interval is considered in this study. Traditional application of confidence interval forecasting consists in evaluation of interval limits for a given significance level. The wider is this interval, the higher is probability and the lower is the forecast precision. In this paper a measure of stochastic forecast accuracy is introduced, and a procedure for balanced estimation of both the predicting accuracy and confidence probability is elaborated. Solution can be obtained in an optimizing approach. Suggested method is applied to constructing confidence intervals for parameters estimated by normal and t distributions

  • PDF

Early Start Branch Prediction to Resolve Prediction Delay (분기 명령어의 조기 예측을 통한 예측지연시간 문제 해결)

  • Kwak, Jong-Wook;Kim, Ju-Hwan
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.347-356
    • /
    • 2009
  • Precise branch prediction is a critical factor in the IPC Improvement of modern microprocessor architectures. In addition to the branch prediction accuracy, branch prediction delay have a profound impact on overall system performance as well. However, it tends to be overlooked when the architects design the branch predictor. To tolerate branch prediction delay, this paper proposes Early Start Prediction (ESP) technique. The proposed solution dynamically identifies the start instruction of basic block, called as Basic Block Start Address (BB_SA), and the solution uses BB_SA when predicting the branch direction, instead of branch instruction address itself. The performance of the proposed scheme can be further improved by combining short interval hiding technique between BB_SA and branch instruction. The simulation result shows that the proposed solution hides prediction latency, with providing same level of prediction accuracy compared to the conventional predictors. Furthermore, the combination with short interval hiding technique provides a substantial IPC improvement of up to 10.1%, and the IPC is actually same with ideal branch predictor, regardless of branch predictor configurations, such as clock frequency, delay model, and PHT size.

Statistical and Probabilistic Assessment for the Misorientation Angle of a Grain Boundary for the Precipitation of in a Austenitic Stainless Steel (II) (질화물 우선석출이 발생하는 결정립계 어긋남 각도의 통계 및 확률적 평가 (II))

  • Lee, Sang-Ho;Choe, Byung-Hak;Lee, Tae-Ho;Kim, Sung-Joon;Yoon, Kee-Bong;Kim, Seon-Hwa
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.554-562
    • /
    • 2008
  • The distribution and prediction interval for the misorientation angle of grain boundary at which $Cr_2N$ was precipitated during heating at $900^{\circ}C$ for $10^4$ sec were newly estimated, and followed by the estimation of mathematical and median rank methods. The probability density function of the misorientation angle can be estimated by a statistical analysis. And then the ($1-{\alpha}$)100% prediction interval of misorientation angle obtained by the estimated probability density function. If the estimated probability density function was symmetric then a prediction interval for the misorientation angle could be derived by the estimated probability density function. In the case of non-symmetric probability density function, the prediction interval could be obtained from the cumulative distribution function of the estimated probability density function. In this paper, 95, 99 and 99.73% prediction interval obtained by probability density function method and cumulative distribution function method and compared with the former results by median rank regression or mathematical method.

Design of Multiple Fuzzy Prediction System based on Interval Type-2 TSK Fuzzy Logic System (Interval Type-2 TSK 퍼지논리시스템 기반 다중 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.447-454
    • /
    • 2010
  • This paper presents multiple fuzzy prediction systems based on an Interval type-2 TSK fuzzy Logic System so that the uncertainty and the hidden characteristics of nonlinear data can be reflected more effectively to improve prediction quality. In proposed method, multiple fuzzy systems are adopted to handle the nonlinear characteristics of data, and each of multiple system is constructed by using interval type-2 TSK fuzzy logic because it can deal with the uncertainty and the characteristics of data better than type-1 TSK fuzzy logic and other methods. For input of each system, the first-order difference transformation method are used because the difference data generated from it can provide more stable statistical information to each system than the original data. Finally, computer simulations are performed to show the effectiveness of the proposed method for two typical time series examples.

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection (피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측)

  • Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.494-499
    • /
    • 2022
  • It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

Optimal Interval Censoring Design for Reliability Prediction of Electronic Packages (전자패키지 신뢰성 예측을 위한 최적 구간중도절단 시험 설계)

  • Kwon, Daeil;Shin, Insun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • Qualification includes all activities to demonstrate that a product meets and exceeds the reliability goals. Manufacturers need to spend time and resources for the qualification processes under the pressure of reducing time to market, as well as offering a competitive price. Failure to qualify a product could result in economic loss such as warranty and recall claims and the manufacturer could lose the reputation in the market. In order to provide valid and reliable qualification results, manufacturers are required to make extra effort based on the operational and environmental characteristics of the product. This paper discusses optimal interval censoring design for reliability prediction of electronic packages under limited time and resources. This design should provide more accurate assessment of package capability and thus deliver better reliability prediction.

An Integrated Hierarchical Temporal Memory Network for Multi-interval Prediction of Data Streams (데이터 스트림의 다중-간격 예측을 위한 통합된 계층형 시간적 메모리 네트워크)

  • Diao, Jian-Hua;Bae, Sun-Gap;Sim, Myung-Sun;Bae, Jong-Min;Kang, Hyun-Syug
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.558-567
    • /
    • 2010
  • There is a large body of ongoing research to develop efficient prediction methods for data streams. These methods provide single prediction with a fixed time interval. It is necessary to develop a method for multi-interval prediction (MIP) because different prediction results may be obtained based on different intervals in many cases. In this paper, we propose a solution for MIP based on the Hierarchical Temporal Memory (HTM) model. In order to solve the problem of MIP with HTM, we present an Integrated Hierarchical Temporal Memory (IHTM) network by introducing a new node type Zeta1LastNode to the original HTM network. Using the hierarchical characteristic of the IHTM network, different levels in the network learn and model the features of a data stream with different intervals and generate prediction results for different intervals. Performance evaluation shows that the IHTM is efficient in the memory and time consumption compared with the original HTM network in MIP.

A Parameter Estimation Method of Multiple Time Interval for Low Frequency Oscillation Analysis (저주파진동 해석을 위한 다구간 파라미터 추정 방법)

  • Shim, Kwan-Shik;Kim, Sang-Tae;Choi, Joon-Ho;Nam, Hae-Kon;Ahn, Seon-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.875-882
    • /
    • 2014
  • In this paper, we propose a new parameter estimation method that can deal with the data of multiple time intervals simultaneously. If there are common modes in the multiple time intervals, it is possible to create a new polynomial by summing the coefficients of the prediction error polynomials of each time interval. By calculating the roots of the new polynomial, it is possible to estimate the common modes that exist in each time interval. The accuracy of the proposed parameter estimation method has been proven by using appropriate test signals.

A Note on the Strong Mixing Property for a Random Coefficient Autoregressive Process

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.243-248
    • /
    • 1995
  • In this article we show that a class of random coefficient autoregressive processes including the NEAR (New exponential autoregressive) process has the strong mixing property in the sense of Rosenblatt with mixing order decaying to zero. The result can be used to construct model free prediction interval for the future observation in the NEAR processes.

  • PDF