중첩형 일반화 사례 (NGE, Nested Generalized Exemplar) 기법은 거리 기반 분류를 최적 일치 규칙으로 사용하며, 노이즈에 대한 내구력을 증가시켜 주는 동시에 모델 크기를 감소시키는 장점이 있다. NGE 학습 중 생성된 교차(cross)나 중첩(overlap) 현상은 분류성능을 저해하는 요인으로 작용한다. 따라서 본 논문은 NGE 학습 중 생성된 교차나 중첩 현상이 발생한 초월 평면에대해 상호정보가 가장 큰 구간을 분리하여, 새로운 초월평면을 구성하게 하여, 분류성능 향상시키고 초월평면의 개수를 감소시키는 기법인 DHGen(Dominant Hyperrectangle Generation) 알고리즘을 제안하였다. 제안한 DHGen은 분류성능면에서 kNN과 유사하고 NGE이론으로 구현한 EACH보다 우수함을 UCI Machine Learning Repository에서 벤치마크데이터를 발췌한 실험자료로 입증하였다.
케이블 TV망은 분배센터에서 가입자에게 방송 신호를 내려보내는데, 하이브리드 파이버 동축케이블(HFC)이 사용된 뒤로는 상향채널을 인터넷 같은 광대역 서비스로 확장해 활용하고 있다. 그런데 이 상향채널은 잡음에 취약한데 한 노드의 증폭기에 누적된 자식노드로부터의 잡음이 어떤 수준을 넘게 되면, 잡음이 더 이상 전파되는 것을 막기 위해 해당되는 노드를 분리하는 것이 필요하게 된다. 각 노드에 이익이 주어질 때 노드 선택 문제(NSP)는 각 노드에 누적된 잡음이 주어진 임계값을 넘지 않으면서 선택된 노드의 이익의 합이 최대가 되게 노드들을 선택하는 문제인데 NP-hard임이 증명되어 있다. 본 논문에서는 NSP의 근사해를 구하는 휴리스틱들을 제안하고 비교 분석하였는데, 구간 분할 휴리스틱이 greedy 휴리스틱보다 더 우수한 결과를 보였다. 이 휴리스틱들은 HFC 운영 시스템에 구현되어, 사용료를 더 많이 지불하는 우수 고객들에 해당하는 노드를 케이블 TV망에서 가능한 분리하지 않음으로써 더 좋은 질의 서비스를 제공하는 데 사용할 수 있다.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.383-393
/
2017
집단화되어 있는 통계자료의 통계량을 구하고자 하는 경우 통계량의 참값에 보다 가까운 값을 얻게 해주는 계산 방법을 사용하는 것이 바람직하다. 본 논문에서는 집단화된 자료의 분위수들을 계산하는 새로운 방법을 제시하였다. 제시된 방법의 주된 아이디어는, 히스토그램에 따라 그려지는 도수다각형에서 각 계급구간에 대응하는 오각형의 넓이를 그 계급구간의 도수보다 하나 많은 개수의 부분으로 등분함으로써 자룟값들을 계산하는 것이다. 제시된 방법을 모의실험을 통해 기존의 방법들과 비교하였는데, 통계학개론 교재에 주어져 있는 몇 가지의 자료를 대상으로 하였다. 모의자료의 생성 방법은, 각 계급구간에서 도수다각형에 의해 주어진 모양의 확률밀도함수를 갖는 분포를 찾아낸 뒤 역변환 방법을 이용하여, 이 분포를 따르는 모의자룟값들을 각 계급구간에서 주어진 도수와 같은 개수만큼 발생시키는 방식이다. 모의자료의 분위수와의 차의 제곱합을 기준으로 할 때 제시된 방법이 기존의 방법들보다 거의 모든 사분위수와 십분위수에서 우세한 결과를 주는 것을 볼 수 있었다.
Background: Procollagen type I N-terminal propeptide (PINP) is one of the most clinically useful bone formation biomarkers. Therefore, the purpose of this study was to independently evaluate the performance of automated total PINP assay and established age- and gender- specific reference intervals for PINP in healthy Korean population. Methods: The imprecision, linearity, and detection capability of Elecsys total PINP assay was determined and reference interval was established using 599 serums from Korean population with normal bone mineral densities based on bone densitometry. Age groups were divided into 20s, 30s, 40s, 50s, 60s and over. Results: Elecsys total PINP had excellent performance in imprecision, linearity, and detection capability. When partitioning age groups in Korean male and female populations, there was significant difference in total PINP between different age groups. In male populations, PINP level was decreased with increasing age, then it remained steady after middle-age. In female populations, there was a decreasing tendency similar to that in the male population with a sharp increase in the 50 to 59 age group. Conclusions: Elecsys total PINP assay showed precise and reliable performance in our study. We established age-related PINP reference intervals for Korean male and female population with normal bone mineral densities.
RFID 기술 표준화를 추진하고 있는 EPCglobal의 ALE(Application Level Event)는 응용 애플리케이션과 RFID 미들웨어 사이의 인터페이스로서 ECSpec(Event Cycle Specification)과 ECReports(Event Cycle Reports)를 정의하고 있다. ECSpec은 애플리케이션이 원하는 태그 데이타에 대한 명세이며, ECReports는 ECSpec이 제시한 조건에 적합한 결과를 보고하기 위한 것이다. ECSpec은 애플리케이션이 미들웨어에 등록하는 이벤트 여과를 위한 명세로서 일정 시간 동안 반복적으로 수행되는 연속질의(continuous query)와 유사한 특성을 가진다. ECSpec을 연속질의로 변환할 때 해당 질의가 가지는 술어(Predicate)는 매우 긴 길이를 가지는 간격이 된다. 기존 질의색인들은 긴 간격 데이타에 의해 삽입과 검색 성능이 저하되는 문제점이 있다. 이 논문에서는 ECSpec을 연속질의의 형태로 변환하고 해당 질의가 가지는 술어인 2차원 간격의 특성을 반영한 새로운 질의 색인 구조로써 TLC-Index를 제안한다. 색인 구조는 그리드 방식의 큰 크기를 가지는 셀 분할 구조와 선분 모양의 가상 분할 구조를 병행하는 하이브리드 구조이다. TLC-index는 긴 간격을 큰 크기를 가지는 셀 분할 구조로 분할 삽입함으로써 저장 공간의 소모를 줄이고 삽입 성능을 향상 시킨다. 또한 짧은 간격들을 짧은 길이를 가지는 가상 분할 구조들로 분할 삽입함으로써 그리드 방식이 가질 수 있는 부분적 겹침을 제거하여 검색 성능을 향상시킨다.
수도의 생육시기별로 건물의 부위별 배분을 추적하고 이의 예측가능성을 검토하고자 통일계의 삼강벼와 일반계인 상풍벼를 1987년 5월 11일부터 10일 간격으로 4회 포장에 이앙재배하여 부위별 건물중을 조사 분석한 결과를 요약하면 다음과 같다. 1. 수도의 부위별 건물중은 이앙기가 늦어질수록 저하하였는데 특히 6월 1일 이후의 이앙에서 그 정도가 심하였다. 품종별로는 상풍벼 보다는 삼강벼의 총건물중 및 부위별 건물중이 더 컸다. 2. 간과 엽소의 건물배분율은 6월 11일 이전의 이앙에서는 이앙후 70일 전후 그리고 6월 21일 이후의 이앙에서는 이앙후 60일 전후까지 계속하여 증가하다가 출수후에 저하하였으며, 엽신의 건물 배분율은 이앙후 계속하여 저하하였다. 3. 간과 엽소의 최대 건물배분율은 폿트와 포장에서 모두 이앙기와 품종에 관계없이 60-70%의 범위였으나, 수확기의 건물배분율은 폿트에서 37-43% 그리고 포장에서는 27-33%로 낮아졌으며, 엽신의 수확기 건물배분율은 11-17%의 범위였다. 4. 이삭의 건물배분율은 출수후부터 급격히 증가하기 시작하여 폿트에서는 42-49% 그리고 포장에서는 52-62%에 달하여 생육환경에 따른 건물배분율의 차이가 있는 것으로 나타났다. 5. 품종별로 이앙기에 관계없이 이앙후의 일수에 따른 부위별 건물배분율의 추정을 위한 회귀식은 시험별로는 결정계수가 71-95%로서 만족한 정도였으나 한 시험에서 얻은 추정식으로 다른 시험의 건물배분율을 추정하기에는 부적합하였다.
매매시점결정은 금융시장에서 초과수익을 얻기 위해 사용되는 투자전략이다. 일반적으로, 매매시점 결정은 거래를 통한 초과수익을 얻기 위해 언제 매매할 것인지를 결정하는 것을 의미한다. 몇몇 연구자들은 러프집합분석이 매매시점결정에 적합한 도구라고 주장하였는데, 그 이유는 이 분석방법이 통제함수를 이용하여 시장의 패턴이 불확실할 때에는 거래를 위한 신호를 생성하지 않는다는 점 때문이었다. 러프집합은 분석을 위해 범주형 데이터만을 이용하므로, 분석에 사용되는 데이터는 연속형의 수치값을 이산화하여야 한다. 이산화란 연속형 수치값의 범주화 구간을 결정하기 위한 적절한 "경계값"을 찾는 것이다. 각각의 구간 내에서의 모든 값은 같은 값으로 변환된다. 일반적으로, 러프집합 분석에서의 데이터 이산화 방법은 등분위 이산화, 전문가 지식에 의한 이산화, 최소 엔트로피 기준 이산화, Na$\ddot{i}$ve and Boolean reasoning 이산화 등의 네 가지로 구분된다. 등분위 이산화는 구간의 수를 고정하고 각 변수의 히스토그램을 확인한 후, 각각의 구간에 같은 숫자의 표본이 배정되도록 경계값을 결정한다. 전문가 지식에 의한 이산화는 전문가와의 인터뷰 또는 선행연구 조사를 통해 얻어진 해당 분야 전문가의 지식에 따라 경계값을 정한다. 최소 엔트로피 기준 이산화는 각 범주의 엔트로피 측정값이 최적화 되도록 각 변수의 값을 재귀분할 하는 방식으로 알고리즘을 진행한다. Na$\ddot{i}$ve and Boolean reasoning 이산화는 Na$\ddot{i}$ve scaling 후에 그로 인해 분할된 범주값을 Boolean reasoning 방법으로 종속변수 값에 대해 최적화된 이산화 경계값을 구하는 방법이다. 비록 러프집합분석이 매매시점결정에 유망할 것으로 판단되지만, 러프집합분석을 이용한 거래를 통한 성과에 미치는 여러 이산화 방법의 효과에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 러프집합분석을 이용한 주식시장 매매시점결정 모형을 구성함에 있어서 다양한 이산화 방법론을 비교할 것이다. 연구에 사용된 데이터는 1996년 5월부터 1998년 10월까지의 KOSPI 200데이터이다. KOSPI 200은 한국 주식시장에서 최초의 파생상품인 KOSPI 200 선물의 기저 지수이다. KOSPI 200은 제조업, 건설업, 통신업, 전기와 가스업, 유통과 서비스업, 금융업 등에서 유동성과 해당 산업 내의 위상 등을 기준으로 선택된 200개 주식으로 구성된 시장가치 가중지수이다. 표본의 총 개수는 660거래일이다. 또한, 본 연구에서는 유명한 기술적 지표를 독립변수로 사용한다. 실험 결과, 학습용 표본에서는 Na$\ddot{i}$ve and Boolean reasoning 이산화 방법이 가장 수익성이 높았으나, 검증용 표본에서는 전문가 지식에 의한 이산화가 가장 수익성이 높은 방법이었다. 또한, 전문가 지식에 의한 이산화가 학습용과 검증용 데이터 모두에서 안정적인 성과를 나타내었다. 본 연구에서는 러프집합분석과 의사결정 나무분석의 비교도 수행하였으며, 의사결정나무분석은 C4.5를 이용하였다. 실험결과, 전문가 지식에 의한 이산화를 이용한 러프집합분석이 C4.5보다 수익성이 높은 매매규칙을 생성하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.