• Title/Summary/Keyword: Interval approximation

Search Result 89, Processing Time 0.02 seconds

A Note on Interval Approximation of a Fuzzy Number

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.913-918
    • /
    • 2006
  • Chanas(2001) introduced the notion of interval approximation of a fuzzy number with the condition that the width of this interval is equal to the width of the expected interval. In this note, this condition is relaxed and the resulting formulae are derived for determining the approximation interval. This interval is compared with the expected interval and approximation interval of a fuzzy number as introduced by Chanas.

  • PDF

A Variable Precision Rough Set Model for Interval data (구간 데이터를 위한 가변정밀도 러프집합 모형)

  • Kim, Kyeong-Taek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.2
    • /
    • pp.30-34
    • /
    • 2011
  • Variable precision rough set models have been successfully applied to problems whose domains are discrete values. However, there are many situations where discrete data is not available. When it comes to the problems with interval values, no variable precision rough set model has been proposed. In this paper, we propose a variable precision rough set model for interval values in which classification errors are allowed in determining if two intervals are same. To build the model, we define equivalence class, upper approximation, lower approximation, and boundary region. Then, we check if each of 11 characteristics on approximation that works in Pawlak's rough set model is valid for the proposed model or not.

Heart Beat Interval Estimation Algorithm for Low Sampling Frequency Electrocardiogram Signal (낮은 샘플링 주파수를 가지는 심전도 신호를 이용한 심박 간격 추정 알고리즘)

  • Choi, Byunghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.898-902
    • /
    • 2018
  • A novel heart beat interval estimation algorithm is presented based on parabola approximation method. This paper presented a two-step processing scheme; a first stage is finding R-peak in the Electrocardiogram (ECG) by Shannon energy envelope estimator and a secondary stage is computing the interpolated peak location by parabola approximation. Experimental results show that the proposed algorithm performs better than with the previous method using low sampled ECG signals.

On Confidence Interval for the Probability of Success

  • Sang-Joon Lee;M. T. Longnecker;Woochul Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.263-269
    • /
    • 1996
  • The somplest approximate confidence interval for the probability of success is the one based on the normal approximation to the binomial distribution, It is widely used in the introductory teaching, and various guidelines for its use with "large" sample have appeared in the literature. This paper suggests a guideline when to use it as an approximation to the exact confidence interval, and comparisons with existing guidelines are provided. provided.

  • PDF

Comparative Study of Confidence Interval Estimators for Coverage Analysis (Coverage 분석을 위한 신뢰구간 추정량에 관한 비교 연구)

  • Lee, Jong-Suk;Jeong, Hae-Duck J.
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.219-228
    • /
    • 2004
  • Confidence interval estimators for proportions using normal approximation have been commonly used for coverage analysis of simulation output even though alternative approximate estimators of confidence intervals for proportions were proposed. This is -because the normal approximation was easier to use in practice than the other approximate estimators. Computing technology has no problem with dealing these alternative estimators. Recently, one of the approximation methods for coverage analysis which is based on arcsin transformation has been used for estimating proportion and for controlling the required precision in [12]. In this paper, we compare three approximate interval estimators, based on a normal distribution approximation, an arcsin transformation and an F-distribution approximation, of a single proportion. Three estimators were applied to sequential coverage analysis of steady-state means, in simulations of the M/M/1/$\infty$ and W/D/l/$\infty$ queueing systems on a single processor and multiple processors.

Estimation for the generalized exponential distribution under progressive type I interval censoring (일반화 지수분포를 따르는 제 1종 구간 중도절단표본에서 모수 추정)

  • Cho, Youngseukm;Lee, Changsoo;Shin, Hyejung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1309-1317
    • /
    • 2013
  • There are various parameter estimation methods for the generalized exponential distribution under progressive type I interval censoring. Chen and Lio (2010) studied the parameter estimation method by the maximum likelihood estimation method, mid-point approximation method, expectation maximization algorithm and methods of moments. Among those, mid-point approximation method has the smallest mean square error in the generalized exponential distribution under progressive type I interval censoring. However, this method is difficult to derive closed form of solution for the parameter estimation using by maximum likelihood estimation method. In this paper, we propose two type of approximate maximum likelihood estimate to solve that problem. The simulation results show the obtained estimators have good performance in the sense of the mean square error. And proposed method derive closed form of solution for the parameter estimation from the generalized exponential distribution under progressive type I interval censoring.

An approximation method for the ARL and the decision interval in CUSUM control charts (누적합관리도에서 평균런길이의 근사와 결정구간의 설정)

  • 이재헌;박창순
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.385-401
    • /
    • 1997
  • Cumulative sum (CUSUM) control charts are widely used in industry for the statistical process control. The statistical design procedure in CUSUM charts tells how to choose the decision interval value. The decision interval is primarily determied by the desired in - control ARL - that is, by the acceptable frequency of false out-of-control signals. In this paper we propose a new approximation method for calculating the ARL and determining the decision interval. The performance of the proposed method is examined by evaluating the accuracy of estimated ARLs and decision intervals in normal and exponential cases.

  • PDF

A simulation study for the approximate confidence intervals of hypergeometric parameter by using actual coverage probability (실제포함확률을 이용한 초기하분포 모수의 근사신뢰구간 추정에 관한 모의실험 연구)

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1175-1182
    • /
    • 2011
  • In this paper, properties of exact confidence interval and some approximate confidence intervals of hyper-geometric parameter, that is the probability of success p in the population is discussed. Usually, binomial distribution is a well known discrete distribution with abundant usage. Hypergeometric distribution frequently replaces a binomial distribution when it is desirable to make allowance for the finiteness of the population size. For example, an application of the hypergeometric distribution arises in describing a probability model for the number of children attacked by an infectious disease, when a fixed number of them are exposed to it. Exact confidence interval estimation of hypergeometric parameter is reviewed. We consider the approximation of hypergeometirc distribution to the binomial and normal distribution respectively. Approximate confidence intervals based on these approximation are also adequately discussed. The performance of exact confidence interval estimates and approximate confidence intervals of hypergeometric parameter is compared in terms of actual coverage probability by small sample Monte Carlo simulation.

POSTERIOR COMPUTATION OF SURVIVAL MODEL WITH DISCRETE APPROXIMATION

  • Lee, Jae-Yong;Kwon, Yong-Chan
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.321-333
    • /
    • 2007
  • In the proportional hazard model with the beta process prior, the posterior computation with the discrete approximation is considered. The time period of interest is partitioned by small intervals. On each partitioning interval, the likelihood is approximated by that of a binomial experiment and the beta process prior is by a beta distribution. Consequently, the posterior is approximated by that of many independent binomial model with beta priors. The analysis of the leukemia remission data is given as an example. It is illustrated that the length of the partitioning interval affects the posterior and one needs to be careful in choosing it.

Adaptive Noise Reduction of Speech Using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Lee, Chang-Ki;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.190-196
    • /
    • 2009
  • A new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale is proposed. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it can be noticed that SNR and MSE of the proposed algorithm are improved than those of Wavelet transform and than those of Wavelet packet transform.

  • PDF