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Comparative Study of Confidence Interval Estimators
for Coverage Analysis
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ABSTRACT

Confidence interval estimators for proportions using normal approximation have been commonly used for coverage analysis of simulation
output even though alternative approximate estimators of confidence intervals for proportions were proposed. This is -because the normal
approximation was easier to use in practice than the other approximate estimators. Computing technology has no problem with dealing these
alternative estimators. Recently, one of the approximation methods for coverage analysis which is based on arcsin transformation has been used
for estimating proportion and for controlling the required precision in [12]. In this paper, we compare three approXimate interval estimators, based
on a normal distribution approximation, an arcsin transformation and an F-distribution approximation, of a single proportion. Three estimators
were applied to sequential coverage analysis of steady-state means, in simulations of the M/M/1/c0 and M/D/1/% queueing systems on a single
processor and multiple processors.

FI9E : &xF A|E30]4(Sequential Simulation), Coverage #4(Coverage Analysis), M2 FZHConfidence Interval), HIE(Pro-
portion), HAMEY AlZY 0|4 (Steady-State Simulation)

1. Introduction

In many simulation studies, the analyst is interested not
only in the point and interval estimates but also in other
characteristics of the simulation output. These character-
istics include the variance, quantiles or percentiles, and
proportions or percentages. In this paper, we discuss con-
fidence interval formulae for the estimation of a single
proportion. These have application in coverage analysis of
simulation output, conducted for assessing the quality of
methods used in simulation output data analysis.
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Sequential simulation is generally accepted as the way
of producing the results which is statistically reliable.
Coverage analysis should be applied to a statistically
sufficient number of repeated simulation experiments to
determine the proportion of experiments in which the final
confidence intervals cover the true value of the estimated
parameter. Sequential coverage analysis, however, has a
problem that some of the simulation experiments may stop
after an abnormally short run, because the stopping
criterion for the sequential simulation has been temporarily
reached.

Considering of these matters, some rules for the proper

experimental analysis of coverage in sequential simulation
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have been formulated and applied for the (non overlapping)
batch means method and SA/HW method (Spectral Anal-
ysis in its version proposed by Heidelberger and Welch [4])
using the M/M/1/e and M/D/1/o queueing systems in [7]
and [9].

While some interesting results have been achieved in
theoretical and experimental studies of coverage analysis
(see for example [2,4,7,9, 14]), but experimental analysis
of coverage is still required for assessing the quality of
practical implementations of methods used for determining
confidence intervals in steady-state simulation.

Estimators based on normal approximations to estimate
the exact values have been widely used for coverage
analysis (see for example [5-7, 9, 14]). Alternative approx-
imate estimators of confidence intervals for proportions are
proposed, but the normal approximation has been com-
monly used for estimating proportions because the normal
distribution is easy to use in practice. Recently, one of the
approximation methods for coverage analysis which is
based on an arcsin transformation has been used for es-
timating proportions and for controlling the required pre-
cision in [12], but we know of no paper which compares
these approximate estimators for coverage analysis.

Our motivation is finding the best interval estimator for
coverage analysis in sequential steady-state simulation.
Thus, we compare three candidate interval estimators for
coverage analysis in this paper. In Section 2 three interval
estimators for coverage analysis are discussed. In Section
3 the numerical results of simulation are presented and

conclusions are in Section 4.

2. Interval Estimators for Coverage Analysis

In any performance evaluation studies of dynamic sys-
tems by means of stochastic discrete-event simulation, the
final estimators should be determined together with their
statistical errors, which are usually measured by the half-
width of the final confidence intervals. Restricting our
attention to interval estimators of proportions, the point
estimator of the proportion p in a binomial experiment is
simply given by the statistic

count of successes insample _ x_

b= size of sample T

which will be used as the point estimate for the parameter p.

The accuracy with which it estimates an unknown

parameter proportion p can be assessed by the probability

P(Ip—pl<d)=1—ad] or
[P(P—-d<p< p+d)=1—a

where 4 is the half-width of the confidence interval for
the estimator and (1 — &) is the confidence level, 0 < a < 1.
Thus, if the total width (24 ) of the corfidence interval is
found for an assumed confidence level of (1—a) and the
simulation experiment were repeated a number of times,
the confidence interval 1 (3 —4, 3 + 4) would contain the
parameter p in 100 (1— @)% of cases. It is well known that
if observations x,xs,**,x, can be regarded as realizations
of independent and identically normally distributed random
variables X, Xs, -, X,, then 4 is estimated by

/A\ = tn~1,a/2/5' [B],

where o®[ 3] is an estimator of the variance of 3 and
ta-1.a02 1S the (1—a/2) quantile of the Student ¢ -dis-
tribution with »—1 degrees of freedom. For # > 30, the
t-distribution can be approximated by the standard normal
distribution. Problems and solutions related with estimating
variance o’ in steady-state simulations are well surveyed
in [8].

The robustness of any method is usually measured by
the coverage of confidence intervals, defined as the pro-
portion 7 with which the number of the final confidence

interval ( 3—4, $+4) contains the true value p. An es-

timator of variance o° used for determining the con-
fidence interval of the point estimate is considered as valid,
i.e. producing valid 100 (1 — a)%6 confidence intervals of the
point estimate, if the upper bound of the confidence interval
of the point estimate  equals at least (1—a) [13]. Cove-
rage analysis, however, is limited to analytically tractable
systems, since the theoretical value of the parameter of

interest has to be known.

2.1 Approximated Interval Estimators for Coverage Analysis

Three approximate estimators of the confidence interval
for the proportion » are described in following sections in
detail.

2.1.1 Interval Estimator for Coverage Analysis: I
The inference procedure for finding a confidence interval

for the binomial parameter p involves two approximations :



® the normal approximation to the binomial distribution
and

¢ the approximation of p by 3 in the standard deviation.

If the unknown proportion p is not expected to be too

close to 0 or 1, we can establish a confidence interval for
» by considering the sampling distribution of . If each
experiment for coverage analysis is independent and
identically distributed, with mean x«= p and variance ¢*=
p(1—p), then an exact confidence interval for the es-
timated proportion 7 is obtained using the binomial
distribution. However, by Theorem I (in Appendix IV), the
sampling distribution of 7 is approximately normally dis-

tributed with mean ¢, = p and variance o%~= p(1—p)/n

when » is large.

To find a confidence interval for p, we can assert that

P(=2,3KZ 2op) = 1—u,
where

)
Vo(l—p)/n

and z, is the (1—a/2) quantile of the standard normal
distribution. Substituting for Z, we write

D—p

P(—z,0{ ——————— < z,p)=1—aor
N PSR “

N } 1- - f 1—
P(p—zqp %(ﬁ(ﬁ‘i‘a&ﬁz %Fl—a.

When = is large, very little error is introduced by sub-
stituting the point estimate 7 for the p under the radical

sign. Then we can write

- [ 30-3 - [ 30-%
P([)—z,,/g ——ﬂ-n—p—)—<p<[)+z,,/2 %)21_0.

Therefore, if the sample size » is sufficiently large
(» = 30), an approximate 100 (1 — )% confidence interval

for the binomial parameter p is given by

;iZaIZ*} P(ln—.ﬁ) ] o

where 73 is the proportion of successes in a random sample

of size = [6].
The accuracy of the normal approximations improves as
the sample size #» increases. They are most accurate for

any fixed » when p is close to 1/2, and least accurate when

Coverage 2ME IS M2IFZ =HSO 245 Him 237 221

p is near 0 or 1. Therefore, although 7 has a normal
limiting distribution, the confidence interval based on the
normal approximation is not appropriate if p is close to 0
or 1 [12].

2.1.2 Interval Estimator for Coverage Analysis : I

Another estimator of the confidence interval for the
proportion is based on the arcsin transformation which has
been given by Fisher. On the basis of the relative between
the mean p and the variance p(1—p)/», for the sample
proportion % = x/» we may determine a function y =
2( ) in such a manner that the variance of the transformed
variable % is independent of p. Here, we can use the arcsin
transform, 5 = 9arcsiny 3 with variance Var[ 3]~ 1/,
to construct an approximate confidence interval for the
proportion being estimated because the arcsin transfor-
mation can produce the approximate values of the cumu-
lative distribution function (CDF) of the normal distri-
bution.

If 7 is approximately normally distributed with mean »
and variance p(1—p)/n, then 3= Zarcsin\/_?) is also ap-
proximately normally distributed with mean = 2arcsinV »

and variance = 1/#, so that

Z=(2 arcsin‘/_z — arcsinV p)*V n (2)

is approximately normally distributed with parameters
©, 1).

By analogy with Equation (28), Equation (29) and Equa-
tion (30) in Appendix V, we obtain that the CDF of the
sample proportion 7 is defined by

P{p}= (D((Zarcsin\f $+2—ln —arcsinV p)*V ), (3

where @ is the CDF of a normal random variable and by

the relation Equation (2) and Equation (29) we can write

~ 1 Zaf2
. } RS .
Zarcsiny| p+ on 2arcsinV p + T

Therefore, we obtain by applying Equation (3) the con-

fidence interval for the proportion % which is based on the

arcsin transform.
A 100 (1 — )% confidence interval for the proportion 7

which is based on the arcsin transform is ( 7z, o) :

?1 = sin(LC/2)? (4)
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and o= sin(UC/2)? (5)

where LC=2arcsinV $—1/(2n) —z /Y # and
UC = 2arcsinV p+1/(2n) + 2 45/V 7

where 7 is the proportion, z.; is the (1—¢/2) quantile

of the standard normal distribution [3].

2.1.3 Interval Estimator for Coverage Analysis : Il
Confidence intervals for the proportion can also be
formulated from the binomial distribution itself as follows :
Let the probability of the event U be P{U}=p. If the
probability of the event U is p at each observation, irre-
spective of the outcome of previous observations, then the
probability that. the event will occur exactly x times in »

observations is
p{x}=( ” )1)”(1~17)"_", x=0,1,,n 6)

Let the ratio of two successive terms of Equation(6) be

_ plat+l} m—x P
fx) = plxt ozl 1-p

,x=01,,2—1. (D

Hence f(x) is a decreasing function, f(0) » (1) > - >
f(n—1), so the course of the probability density function
(PDF) may be characterized as follows :

(D The PDF is steadily decreasing if f(x)< 1 for all x,
which leads to

””p <1 or p< ——

1) = 1- nt+l ’

@ The PDF is steadily increasing if 7(x) > 1 for all #, ie.,

P51 o py —2—.

=D = =075 n+1

@ The PDF first increases and then decreases if £(0) >
1> f(n-1), ie,

1 n
n+1 << n+1l -~

In the third case, the mode (x = ») of the PDF may be
found from the inequality

f(r—1) 21> f(»), (8

which is identical with the inequalities p{r} = p{r—1} and
p{r} > p{r+1}. Substitution of Equation (7) into Equation
(8) leads to

n—-r+1 p n—7v P
=
v 1—-p 1 r+1 1—p° ©

which gives (n+1)p—1< < (n+1)p.

The CDF P{x} is discontinuous. So the equation P{x} =
P, or x = xp, can be solved only for P = P{0}, P{1}, -,
P{n}, and for these values of P the solutions are x p =
0,1, m

The quantiles x p of the binomial distribution are approx-
imated by the quantiles of the F-distribution(see the
Appendix I for proof), as

x+1 1—p
(x+ 1) F(ry, rp)
1_P{ =)+ (e DF(ry,79) ”’}’

Px zl—P{F(rl,rz)< nox b }

(0]

where the degrees of freedom for F-distribution are
r1=2(x+1) and » = 2(n—x). Thus, the equation P {xp}
= P is identical with

n—xp ?

il 1-p ] I7F

P{F(r,7r)<

The confidence intervals are functions of x, n, and P.
The upper confidence interval p is determined so that the
probability of frequencies, &, smaller than or equal to the

one observed frequency, ko= x/n,is P for p = », ie,

“p is determined from the equation

Plh<hyip= p}= 2

x
v=0

( n )7)”(1—7» "v—p  (12)
v
and similarly the lower confidence interval p is determined

from the equation
Plhzhip= pb= X (%) p"U=p)""=1-P. (13

These equations may be solved directly means of Equa-
tion (10) from which we obtain the confidence interval for
proportion. From Equation (9), Equation (10), and Equation
(12), a 100 (1—a)% upper confidence interval for the
proportion is

— (x+DF1_ o7y, 73)

bv= (=) +x+DF - op(ry,7ry) 44

where # is the sample size, x is the number of events of
interest occurring in the » observations and F,_ (7, 73)

is the (1— a/2) quantile of the F distribution with », = 2%



(x+1) degrees of freedom for the numerator and »,=

2*(n—x) degrees of freedom for the denominator.
Similarly, from Equation (9), Equation (10), and Equation

(13), a 100 (1—a)% lower confidence interval for the

proportion is

—~ X

pr= x+(m—x+ 1) Fi_gp(rs, 7y)

(15)

where Fi_,p(7r3,7,) is the (1—«/2) quantile of the F
distribution with 73 = 2 * (r—x+1) degrees of freedom for
the numerator and », = 2*x degrees of freedom for the

denominator [3, 10].

3. Numerical Results

Implementing the interval estimators of sequential cov-
erage analysis has been discussed in the previous section.
QOur other implementation rules for sequential coverage
analysis on a single processor and multiple processors
under MRIP (Multiple Replications In Parallel) scenario of
AKAROA ([1] and [11]) are adopted from [7] and [9]. For
finding a robust interval estimator for coverage analysis,
we used the SA/HW method applied to estimating the mean
response times of M/M/1/c and M/D/1/c queueing sys-
tems.

All numerical results in this paper were obtained by
stopping the simulation experiments when the final steady-
state results reached a required precision of 5% or less, at
the 0.95 confidence level, and 200 or more bad confidence
intervals (to secure representativeness in the analysed
data) had been collected. All results were also filtered of
strangely short simulation runs after 200 bad confidence
intervals are collected. As argued in [7] and [9], the filtering
of short simulation runs guess a more realistic estimate of
actual coverage likely to be achieved under experimental
conditions.

The results of sequential coverage analysis for SA/HW
using three interval estimators on a single processor are
presented in (Figure 1) for M/M/1/c and (Figure 4) for
M/ D/1/ queueing systems. In both simulation models, the
half-width of confidence interval of proportions using the
normal distribution, the arcsin transformation and the F
distribution is almost the same.

The simulation results of three estimators of confidence
interval for coverage using 2 and 4 processors under MRIP
scenario of AKAROA are also presented in (Figure 2) and
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(Figure 3) for M/M/1/o and (Figure 5) and (Figure 6) for
M/D/1/oo. As we can see from these Figures, in both
M/M/1/~o and M/D/1/e queueing systems, there is no
significant difference between these three estimators in this
case, as well.

(Figure 7) to (Figure 9) for M/M/1/o and (Figure 10)
to (Figure 12) for M/D/1/ depict the results obtained from
sequential coverage analysis of SA/HW for the three
interval estimators when the simulations were run using
P =1, 2 and 4 processors under MRIP scenario of AKAROA.
Using more processors usually produces narrow confidence
intervals for heavier loaded systems whatever interval
estimator is used. For lighter loaded systems, however,
using more processors sometimes produces narrower con-
fidence intervals and sometimes produces wider confidence
intervals because the required coverage has actually been
reached by the actual coverage with sufficiently small
confidence intervals using single processor.

- Confidence intervals of proportions using the normal, the
arcsin, and the F distribution at e = 0.001 and sample size
n =50 are depicted in (Figure 13) and the upper limits of
confidence intervals of proportions from 0.5 to 1 using the
normal, the arcsin, and the F distribution are in <Table
1>. The figures confirm the theoretical claims, that interval
estimators of proportion based on the arcsin transformation
and the F distribution never exceed the practical lower and
upper limits of confidence intervals. On the other hand, it
shows that the upper limit of the interval estimator of
proportion based on the normal distribution can exceed 1.0,
making it inappropriate in simulation coverage analysis.

(Table 1> Upper limits of confidence intervals of proportions
using normal, arcsin, and F distribution
(@ =0001 & n=50)

Proportion | Normal {Arcsin} F | Proportion | Normal | Arcsin| F
05 0733 | 073310728 o076 0959 | 093 |0919
052 0753 | 0.751 |0745| 078 0973 | 0.942 | 0.931
054 0745 | 0768 0762 08 098 | 0953 (0942
056 | 0791 | 0785 (0778 082 | 0999 | 0963 |0.953
058 081 | 0801 |0794| 084 101 | 0973 | 0.963
06 0.828 | 0817 | 0809 086 1.02 | 0982 | 0972
0.62 0846 | 0833 | 0824} 088 103 | 0989 | 098
0.64 0863 | 0848 | 0833| 09 104 | 09% | 0987
066 088 | 08630854 092 105 | 0999 | 0993
0.68 0897 | 0877 |0868| 094 1.05 1 10997
07 0913 | 0891 [0.881| 096 105 | 0.997 {0998
072 0929 | 0905 | 08341 098 105 | 0983 | 1
0.74 0944 | 0.944 | 0.907 10 1 |og6] 1
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(Figure 1) Half-Width of Confidence Interval of Coverage Using
Normal Distribution Approx., Arcsin Transformation
and F-Distribution Approx. in M/M/1/c0 (P =1)
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(Figure 2) Half-Width of Confidence Interval of Coverage Using
Normal Distribution Approx., Arcsin Transformation
and FDistribution Approx. in M/M/1/ (P =2)
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(Figure 3) Half-Width of Confidence Interval of Coverage Using
Normal Distribution Approx., Arcsin Transformation
and F-Distribution Approx. in M/M/1/c0 (P = 4)

0.02 = - - - -
E Nomal Dist Aeerex

rcoi 7
0.018 H.C=_F Distnbuton i

0016
0.014
0012

0.01
0.008
0.006
0.004
0.002

Half Width of Confidence Interval

(Figure 4) Half-Width of Confidence Interval of Coverage Using
Normal Distribution Approx., Arcsin Transformation
and F-Distribution Approx. in M/D/1/oc (P=1)
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(Figure 5) Half-Width of Confidence Interval of Coverage Using
Normal Distribution Approx., Arcsin Transformation
and F-Distribution tApprox. in M/D/1/o0 (P = 2)
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(Figure 6) Half-Width of Confidence Interval of Coverage Using
Normal Distribution Approx., Aresin Transformation
and F-Distribution Approx. in M/Dj/1/c (P = 4)
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Using 1, 2, and 4 Processors in Normal Distribution
Approximation of M/M/1/o
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(Figure 13) Confidence intervals of proportions using normal,
arcsin, and  F distribution { ¢ = 0.001 & n = 50)

4, Conclusions

While some interesting results have been achieved in
theoretical and experimental studies of coverage analysis,
experimental analysis of coverage is still required for as-
sessing the quality of practical implementations of methods
used for determining confidence intervals in steady-state
simulation. We have experimented with three interval esti-
mators, based on the normal distribution approximation, the
arcsin transformation and the £ distribution, for sequential
coverage analysis for the SA/HW method of M/M/1/c and
M/D/1/ec queueing systems on a single and multiple proc-
essors. Although the results obtained show that they are
hasically equivalent, being concerned about their validity,
we would point at the estimators based on the arcsin
transformation and the F distribution as more appropriate
one in coverage studies, especially if higher value of con-~
fidence level is assumed.

Confidence interval estimators for proportions using the
{symmetric) normal approximation have been commonly
used for coverage analysis of simulation output even though
alternative estimators of (asymmetric) confidence intervals
for proportions have been proposed in the past. This is
probably because the normal approximation had been easier
to use in practice than the other estimators. But, the current
computing technology has no longer a problem with dealing
with alternative estimators. Even confidence intervals for
coverage analysis based on the T distribution can be cal~-
culated easily by a standard computer. They also guarantee
that the upper limits of confidence intervals for proportions

do not exceed 1.0.
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Appendix I : Relationship between Binomial and
FDistributions

When deriving Equation (10) we consider the integral
! —x—1
fﬁ Yy (A-y)"""dy, x=0,1,,n
which by integration by parts gives

. l —Xx ]' x, n—x
[y =y ldy = ——p*1—p) """+
14 n X

X

1
x—leq __ n—x
— fpy (Q—-y) " "dy

If reduction of the integral is continued by successive

applications of this formula, we obtain, after multiplication

!

n( ";l)f:y"(l—y)”""‘ldy = g( . )p”(l—p)"‘”(
= P{x}.

16)

This result may be expressed by the incomplete Beta~
function (see the Appendix IIT ), which according to Equa-
tion (24) may be written as

’ x —x—1
By(x+1,n—x) = foy (I=y) """ dy.

Substitution into Equation (16) leads to

B{x+1,n—x)—By(x+1,n—x)
B(x+1,n—x) an
= 1-I,{(x+1,n—x),

P{x}

]

see Equation (23) and Equation (25).

Furthermore, according to Equation (26) the CDF of F
distribution for the variable (see the Equation (20) in
Appendix IT)

rF(r, 7r3) 7

m is Ply} = I( =)

y= 2 ' 2

from which we - after comparison with Equation (17) - see
that

(71, 73) _

Plx}=1=P{} for y= rot v F(ry, vy) »
and », = 2(zx+1),7y = 2(n—x).
This result may also be written
(x+ 1) F(ry,»
P} ~1—-P ad 1.72) <p 18)

(=0 +(x+1) F(rq,7y)



or as

1 (n—x) _p
Plx}~1 P[F(rl,r2)< ey 1_ﬂ][:a].

Appendix II : Relationship between Beta and
FDistributions

The F-distribution may be expressed by the well-known
Beta function in the following way (For detail, see the
pp.381-384 in [3]) : The probability density function of
F-distribution is

8l + ¥y -
F(T) non -1
pz} = —‘1—’—,2712 r? .
F(T)F(T) (r;+nz2)
(19)
0 < z { ),
for z = F(ry, 7).
Introducing the variable y by the transformation
Yo y
F(ry,ry) = — O=<y<1),
7] 1 -y
. _ 4! F(7’1 ,72)
ie, y= ot FOrrary) (20
d = i 1)
an 1=y= 7’2+7’1F(7’1-7’2)
we obtain from Equation (19) the following equation
1+ 7
I( 12 2 ) o o
P} = —————y ' (A-»*' O=y=D,
I M=) (22)
which is called the Beta-distribution.
Appendix III : Beta Function and Incomplete Beta
Function
Beta function is
= (N gy gy = L T(E)
Bs.H) = [[y7-9)Tay = Sptees @)

Incomplete Beta function is the integral
7 s -1
By(s,) = [[»7N1-» "y, 0=y @)

The ratio between the complete and the incomplete Beta
function is
B,(s, t)

L(s, t) = Bt (25)
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From Equation(22)~(25) it follows that

Py} =1, 7 '3 )

so that the quantiles of the y—distribution - and therefore
also of the F-distribution — may be computed from complete

and incomplete Beta function.

Appendix IV : Theorem I

If X is a binomial random variable with mean ¢ = np

and variance ¢° = #p(1— ), then the standardized variable

X—np

T, (27
Vaup(1—p)

as n — oo, is approximately the standardized normal dis-
tribution n (0, 1).

Appendix V : Relationship between Binomial and
Nomal Distribution

Dividing both numerator and denominator of Equation
(27) of Appendix IV by n, we obtain

i)

/ p(1=p)
n

ie., the proportion » = x/# is approximately normally

distributed with mean p and variance p(1—p)/». In most
applications of the binomial distribution it is not a single
value of p{x} which is required, but sums of p{x} of the

form P{xlsxsx2}= ;D{X}

The areas of the corresponding to this sum may be
approximated by the area of the normal distribution from
x1—1/2 to x9+ 1/2, so that

% 1 5+ 1/2 ~L2;z—£i

Plx;<x<x5) =x=2mi){x}_ Vorg fx,—l/ze &
x+1/2—£ n—-1/2-¢

= () —o(———),

where @ is the CDF of a Gaussian random variable with
E=mnpand o=V up(l—p).For x= x; = x,, we obtain an

approximation to p{x}, namely,
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For the cumulative distribution function P{x} we have

x+-2l——nﬁ
Plx} = O|———=], (28
) Vaup(1—p)

xl—a/2+71_nb

Vaup(l—p)

1
np—7+21_a/z\/ np(l—p),

and by division by =

which leads to =Zi_azs OF X1_gp™

v

o 1 | _p(1—-p)

Pr-oz=0— m +Zi—ap —_n———_ » Or

ol 1 f »(1—p)

pl—a/2+ I zl)-i_Zl—a/Z n , (29)

——

1
Pr-apt om —-p

or — Y
f p(1—p)
n

= Zl—g/z. (30)
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