• Title/Summary/Keyword: Interrogator

Search Result 31, Processing Time 0.026 seconds

Development of A FBG Sensor Interrogator for Detecting Strain and Performance Comparison of Peak Detection Algorithms (변형 검출을 위한 FBG 센서 인테로게이터 개발과 피크검출 알고리즘 성능 비교)

  • Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1137-1142
    • /
    • 2013
  • FBG sensors are mainly used to measure strain and temperature of structures. In this paper, an interrogator of FBG sensors is developed and implemented to measure the crack of structures using FPGA and DSP. Developed interrogator consists of an optical source, an optical circulator, an optical grating and a CCD sensor and controller. The spectrum of the reflected light from the FBG sensor is analyzed and peak wavelength is detected. Next, strain of structure can be measured using shift of peak wavelength. Centroid algorithm and Gaussian fitting which are mainly applied to detect peak wavelength of the interrogator are compared in this paper. As a result of experiment, Gaussian fitting is suitable for a developed interrogator.

Implementation of an Interrogator for the Operationand Measurement of Fiber Bragg Grating Multiplexing Sensor Probes (FBG 다중화 센서 탐촉자 구동 및 측정을 위한 인터로게이터 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • This research focuses on the development of an interrogator that operates and measures fiber Bragg grating(FBG) multiplexing sensor probes for accurate-measurement of the blade deflection in a wind power generator. We designed and fabricated an optical source and spectrum module for the interrogator. Additionally, we verified the wavelength repeatability within 0.001 nm and the wavelength stability within 1 pm of the optical source, and we experimentally determined that the wavelength scanning range was about 44.4 nm. The FBG sensor with 2 nm resolution can be extended to a performance-efficient system that measures more than 20 sensors. The implemented interrogator has 0.141 nm wavelength variations corresponding to an ambient temperature range of $0^{\circ}C$ to $70^{\circ}C$. The measurement error can be easily reduced by employing a temperature compensation algorithm. In this study, we quantitatively confirmed the accuracy and operating stability of the interrogator.

Design of Interrogator for Airspace Surveillance in Multilateration Systems (항공용 다변측정 감시시스템 적용을 위한 질문기 설계)

  • Koh, Young-Mok;Kim, Su-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Multilateration systems are used to provide the position of aircraft in flight or on airport runways. In the multilateration systems, the interrogator is an important transmitter that used to interrogate the airplanes with appropriately scenario in surveillance airspace. Whisper-Shout interrogation sequence, which is one of the key functions of the interrogator, can control airport traffic density when intruder airplanes are coming into the surveillance airspace. Therefore collision chance between airplanes could be reduced and also get highly accurate location of incoming airplane in multilateration systems. In this paper, we developed the interrogator that allows it to transmit Mode A/C and Mode S interrogations which is similar to existing secondary surveillance radar. With appropriately controlled Whisper-Shout sequence in the interrogator, the multilateration systems can avoid synchronous garbling and FRUIT phenomenons caused by receiving multiple responses from a number of airplanes.

Implementation of FBG Sensor Network System for Monitoring Structure Deformation (구조물 변형 모니터링을 위한 FBG센서 네트워크 시스템 구현)

  • Park, Jang-Sik;Park, Keun-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.841-846
    • /
    • 2014
  • FBG sensors are mainly used to measure deformation of structures such as tunnels, bridges and ships. In this paper, an interrogator of FBG sensors is developed and implemented to measure the status of structures. A developed interrogator includes CAN wired and Zigbee wireless communication for remote monitoring. Strain of structure is measured using shift of wavelength of reflected light from FBG sensor. A digital signal controller is used to process signals of a FBG sensor and transmit data for remote monitoring. As a result of experiment, developed interrogator is effective to measure deformation of structures.

An Interrogator for Active Acquisition of Airspace in Active Multilateration (능동적 공역확보를 위한 다변측정 감시시스템용 질문기)

  • Koh, Young-Mok;Kim, Yong-Hak;Kim, Su-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • This paper is concerned with an interrogator capable of constructing a interrogation scenario for acquiring active airspace to the intruding aircraft into the surveillance area of the MLAT system. In the MLAT system, the interrogator is an important device used to carry out the interrogation towards the aircraft within the surveillance airspace in the appropriate surveillance scenario. Unlike a conventional SSR's interrogation methods that interrogate for airplanes flying within a certain range, the MLAT system requires a interrogation system that can actively interrogate from remote to near range, or according to operational scenarios, for aircraft intruding into the surveillance range. The interrogator implemented in this paper can be used for interrogating and monitoring aircraft within each surveillance airspace using whisper-shout algorithm according to varying output power based on the actual operation distance.

A study on the Anti-Collision Algorithm for communication between interrogator and transponders in the RFID System (RFID 시스템에서 Interrogator와 Transponders간 통신을 위한 Anti-Collision Algorithm 연구)

  • 이신혜;임동기;이상용
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.425-428
    • /
    • 2004
  • 최근 각광을 받고 있는 RFID는 재고와 제조 유통분야를 중심으로 발전해 오던 바코드를 대체하여 물류유통의 혁명을 초래할 기술로 주목 받고 있다. 그러나 국내의 RFID에 대한 기술 및 자본의 투자는 해외에 비해 미흡한 실정이다. RFID 시스템에서 하나의 인터러게이터 영역에 다수의 트랜스 폰더가 동시에 데이터를 전송하게 되어 데이터 충돌이 발생하게 된다. 본 논문에서는 인터러게이터에서 각 트랜스폰더의 상호 충돌로부터 신뢰성 있게 데이터를 보호하고 해독이 가능하도록 하는 여러 충돌 방지 시스템에 대해서 알아본다.

  • PDF

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

Low-cost Fiber Bragg Grating Interrogator Design for Unmanned Aircraft (무인 항공기를 위한 저가형 FBG 인터로게이터 설계)

  • Hong, Jae-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Complex materials are widely used in aviation industries where lightweighting is essential because they have lighter properties than metals. However, composite materials can cause defects such as internal void formation, poor adhesive mixing, and non-adhesive parts during the production process, and there is a risk of micro-cracking and interlayer separation due to low energy impact. Therefore, a structural damage test is essential. As a result, structural integrity monitoring using FBG is drawing attention. Compared to conventional electrical sensors, FBG has the advantage of being more corrosion-resistant and multiplexed without being affected by electrical noise. However, interloggers measuring FBG are expensive and have a large disadvantage because they are made on the premise of measuring large structures. In this paper, low-cost interloggers were designed for use in unmanned or small aircraft using optical switche, WDM filter, and LTFs, and compared to conventional high-priced interrogator.

Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구)

  • Jang, Byeong-Wook;Park, Sang-Oh;Lee, Yeon-Gwan;Kim, Chun-Gon;Park, Chan-Yik;Lee, Bong-Wan
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Low-velocity impact can cause various damages which are mostly hidden inside the laminates or occur in the opposite side. Thus, these damages cannot be easily detected by visual inspection or conventional NDT systems. And if they occurred between the scheduled NDT periods, the possibilities of extensive damages or structural failure can be higher. Due to these reasons, the built-in NDT systems such as real-time impact monitoring system are required in the near future. In this paper, we studied the impact monitoring system consist of impact location detection and damage assessment techniques for composite flat and stiffened panel. In order to acquire the impact-induced acoustic signals, four multiplexed FBG sensors and high-speed FBG interrogator were used. And for development of the impact and damage occurrence detections, the neural networks and wavelet transforms were adopted. Finally, these algorithms were embodied using MATLAB and LabVIEW software for the user-friendly interface.

Multi-point detection of hydrogen using the hetero-core structured optical fiber hydrogen tip sensors and Pseudorandom Noise code correlation reflectometry

  • Hosoki, Ai;Nishiyama, Michiko;Igawa, Hirotaka;Seki, Atsushi;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In this paper, the multi-point hydrogen detection system based on the combination of the hetero-core optical fiber SPR hydrogen tip sensor and interrogator by pseudorandom noise (PN) code correlation reflectometry has been developed. In a light intensity-based experiment with an LED operating at 850 nm, it has been presented that a transmitted loss change of 0.32dB was induced with a response time of 25 s for 4% $H_2$ in $N_2$ in the case of the 25-nm Au, 60-nm $Ta_2O_5$, and 5-nm Pd multi-layers film. The proposed sensor characteristic shows excellent reproducibility in terms of loss level and time response for the in- and out- $H_2$ action. In addition, in the experiment for multi-point hydrogen detection, all sensors show the real-time response for 4% hydrogen adding with reproducible working. As a result, the real-time multi-point hydrogen detection could be realized by means of the combination of interrogating system and hetero-core optical fiber SPR hydrogen tip sensors.