• Title/Summary/Keyword: Interpolation function

Search Result 500, Processing Time 0.029 seconds

An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions

  • Azar, Bahman Farahmand;Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.979-999
    • /
    • 2015
  • This paper proposes a novel reliability analysis method which computes reliability index, most probable point and probability of failure of uncertain systems more efficiently and accurately with compared to Monte Carlo, first-order reliability and response surface methods. It consists of Initial and Simulation steps. In Initial step, a number of space-filling designs are selected throughout the variables space, and then in Simulation step, performances of most of samples are estimated via interpolation using the space-filling designs, and only for a small number of the samples actual performance function is used for evaluation. In better words, doing so, we use a simple interpolation function called "reduced" function instead of the actual expensive-to-evaluate performance function of the system to evaluate most of samples. By using such a reduced function, total number of evaluations of actual performance is significantly reduced; hence, the method can be called Reduced Function Evaluations method. Reliabilities of six examples including series and parallel systems with multiple failure modes with truncated and/or non-truncated random variables are analyzed to demonstrate efficiency, accuracy and robustness of proposed method. In addition, a reliability-based design optimization algorithm is proposed and an example is solved to show its good performance.

The Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Yang, Jae-Guen;Joo, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate, hollow cylinder and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTION

  • KIM, MORAN;MIN, CHOHONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.409-416
    • /
    • 2015
  • In many practical applications, we face the problem of reconstruction of an unknown function sampled at some data points. Among infinitely many possible reconstructions, the thin plate spline interpolation is known to be the least oscillatory one in the Beppo-Levi semi norm, when the data points are sampled in $\mathbb{R}^2$. The traditional proofs supporting the argument are quite lengthy and complicated, keeping students and researchers off its understanding. In this article, we introduce a simple and short proof for the optimal reconstruction. Our proof is unique and reguires only elementary mathematical background.

$H^{\infty}$ Optimization of Mixed Sensitivity Function using Model-Matching and Interpolation Algorithm (모델정합과 보간 알고리즘을 이용한 혼합된 감도함수의 $H^{\infty}$ 최적화)

  • 윤한오;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.3
    • /
    • pp.16-24
    • /
    • 1992
  • In this paper, we solve the problem of designing a robust optimal controller which minimizes the H$\infty$-norm of the mixed sensitivity function matrix for linear multivariable systems. For a given minimized value, ${\gamma}$>o, an algorithm of finding all stabilizing controllers, such that the H$\infty$-norm of the mixed sensitivity function matrix is less than ${\gamma}$, is developed. The proposed algorithm, which is based on the model-matching and the interpolation theory, can be used for the H$\infty$-optimization problem.

  • PDF

Image Magnification using Fuzzy Method for Ultrasound Image of Abdominal Muscles (복부 초음파 영상에서의 퍼지 기법을 이용한 영상 확대)

  • Kim, Kwang-Baek;Lee, Hae-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.23-28
    • /
    • 2011
  • Ultrasound images for the abdominal muscles are complicated enough to have difficulty in interpreting their results. For better interpretation, magnifying the original image is necessary but its magnified image could be deteriorated and suffer from information loss. Thus, in this paper, we propose a magnifying method that reduces the gap between the original image and the magnified one in quality using a fuzzy method with weights for its brightness and interpolation. The proposed method extracts information of pixels in magnified image that have most similar characteristics of the original one by applying fuzzy membership function. In the process, the difference in the brightness between pixels of the magnified image and the original one using bilinear interpolation method and the weight value using the interpolation from multiplied values of four pixels are supplied to the fuzzy membership function. In this experiment, the proposed method reduces the cloudy phenomenon appears commonly compared to the bilinear interpolation method among those qualitative issues of image interpretation.

Kernel Analysis of Weighted Linear Interpolation Based on Even-Odd Decomposition (짝수 홀수 분해 기반의 가중 선형 보간법을 위한 커널 분석)

  • Oh, Eun-ju;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1455-1461
    • /
    • 2018
  • This paper presents a kernel analysis of weighted linear interpolation based on even-odd decomposition (EOD). The EOD method has advantages in that it provides low-complexity and improved image quality than the CCI method. However, since the kernel of EOD has not studied before and its analysis has not been addressed yet, this paper proposes the kernel function and its analysis. The kernel function is divided into odd and even terms. And then, the kernel is accomplished by summing the two terms. The proposed kernel is adjustable by a parameter. The parameter influences efficiency in the EOD based WLI process. Also, the kernel shapes are proposed by adjusting the parameter. In addition, the discussion with respect to the parameter is given to understand the parameter. A preliminary experiment on the kernel shape is presented to understand the adjustable parameter and corresponding kernel.

A Color Interpolation Method for Improved Edge Sensing (에지 선별을 개선한 컬러 보간법)

  • Cho, Yang-Ki;Kim, Hi-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1216-1223
    • /
    • 2006
  • In many imaging devices, a single image sensor is used, which is covered by a color filter array to filter out the specific color components from light. Since an image acquired from this image sensors have a color components at each pixel, it is needed to be reconstructed to a perfect image. In this paper, a new color interpolation method for the imaging devices having a single image sensor is proposed. The proposed method improves a edge sensing function to obtain satisfactory results in edges of an image, md presents a new inter-channel correlation for improving interpolation performance in smooth region. We have compared our method with several exiting methods, and our experimental results have proved better interpolation performance in comparing with the other results.

A Study on the Combined Use of Exact Dynamic Elements and Finite Elements (엄밀한 동적 요소와 유한 요소 통합 해석 방법에 관한 연구)

  • 홍성욱;조용주;김종선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Although the finite element method has become an indispensible tool for the dynamic analysis of structures, difficulty remains to quantify the errors associated with discretization. To improve the modeling accuracy, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for the Timoshenko beam element are derived using the exact dynamic element modeling (EDEM) and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. A combined use of finite element method and exact interpolation functions is presented to gain more accurate mode shape functions. This paper also presents a combined use of finite elements and exact dynamic elements in design/reanalysis problems. Timoshenko flames with tapered sections are tested to demonstrate the design procedure with the proposed method. The numerical study shows that the combined use of finite element model and exact dynamic element model is very useful.

An Image Magnification Using Adaptive Interpolation Based Sub-pixel (부화소 기반의 적응적 보간법을 통한 영상 확대)

  • Park, Dae-Hyun;Yoo, Jea-Wook;Kim, Yoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.9-16
    • /
    • 2008
  • Recently, there are a lot of multimedia products using image interpolation system. However, most interpolation systems in existence suffer visually to some extents from the effects of blurred edges and jagged artifacts in the image. In this paper, we propose a new adaptive linear interpolation system that uses the sub-pixel. The proposed system calculate the warped distance among the pixels of an image by optimizing length parameter. A new cost function is introduced to reflect frequency properties of the origin data in order to improve image quality. Experimental results show that our new algorithm significantly outperforms conventional interpolation methods in subjective quality, and in most cases, in terms of PSNR as well.

The Generation of Free-Form Surface using Scattered Data Interpolation (분산 데이터 보간을 이용한 자유 형태 곡면 생성방법)

  • Lee, A-Ri;Park, Cheol-Ho;Sim, Jae-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2504-2511
    • /
    • 1999
  • This paper proposes the scattered data interpolation as an efficient method that is designed for free-form surface. Data interpolation is an essential method of designing for various objects. For the generating free-form surface of complexity construction, the existing method had problems to represent flat area and sharp corner edge, in presenting objects with computing the weight of control points. For solving this problem, we proposes the generating method of new approximation surfaces, using scattered data interpolation. This method obtains B-Spline basis function which calculates main curvature, having optimized value in variable area, on given control points and changed objects, and then computes the changing rate the approximating data, using it's value. We also present this method that generates smoother free-form surface, using the scattered data interpolation with minimum weight.

  • PDF