• Title/Summary/Keyword: Interpolation Model

Search Result 703, Processing Time 0.031 seconds

Efficient Performance Evaluation Method for Digital Satellite Broadcasting Channels (효율적인 디지틀 위성방송채널 성능평가 기법)

  • 정창봉;김준명;김용섭;황인관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.794-801
    • /
    • 2000
  • In this paper, the efficient new performance evaluation method for digital communication channels is suggested and verified its efficiency in terms of simulation run-tim for the digital satellite broadcasting satellite TV channel. In order to solve the difficulties of the existing Importance Sampling(IS) Technics, we adopted the discrete probability mass function(PMF) in the new method for estimating the statistical characteristics of received signals from the measured Nth order central moments. From the discrete probability mass function obtained with less number of the received signal than the one required in the IS technic, continuous cumulative probability function and its inverse function are exactly estimated by using interpolation and extrapolation technic. And the overall channel is simplified with encoding block, inner channel performance degra-dation modeing block which is modeled with the Uniform Random Number Generator (URNG) and concatenated Inverse Cummulative Pr bility Distribution function, and decoding block. With the simplified channel model, the overall performance evaluation can be done within a drastically reduced time. The simulation results applied to the nonlinear digital satellite broadcasting TV channel showed the great efficiency of the alogrithm in the sense of computer run time, and demonstrated that the existing problems of IS for the nonlinear satellite channels with coding and M-dimensional memory can be completely solved.

  • PDF

Performance of MIMO-OFDM Systems for Underwater Communications (수중 통신 환경에서의 MIMO-OFDM 시스템 성능 분석)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hoon;Kim, Sea-Moon;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.597-599
    • /
    • 2010
  • In this paper, by considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

  • PDF

Estimation of Soil Loss Changes and Sediment Transport Path Using GIS and Multi-Temporal RS data (GIS 및 다시기 RS 자료를 이용한 토양손질량 변화 및 이동경로 추정)

  • 권형중;박근애;김성준
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.139-152
    • /
    • 2002
  • The purpose of this study is to estimate temporal soil loss change according to long-term land cover changes using G1S and RS. Revised USLE(Universal Soil Loss Equation) factors were prepared by using point rainfall data, DEM(Digital Elevation Model), soil map and land cover map. During the past two decades, land cover changes were traced by using Landsat MSS and TM data. As a result, forest area in 2000 has decreased 25.3 $km^2$ compared with that in 1990. Soil loss has decreased 3751.2 tou/yr. On the other hand, upland area has increased 22.5 $km^2$. Soil loss of upland has increased 5395.4 to/yr. Therefore, soil loss in 2000 increased 6.3 kg/$m^2$/yr compared with that in 1990. This was mainly caused by the increased upland area.

  • PDF

A Study on Super Resolution Image Reconstruction for Effective Spatial Identification

  • Park Jae-Min;Jung Jae-Seung;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.4 s.35
    • /
    • pp.345-354
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method has proven to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper, we applied the super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and are overlapped at high rate. We constructed the observation model between the HR images and LR images applied with the Maximum A Posteriori(MAP) reconstruction method which is one of the major methods in the super resolution grid construction. Based on the MAP method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Estimation of Fine-Scale Daily Temperature with 30 m-Resolution Using PRISM (PRISM을 이용한 30 m 해상도의 상세 일별 기온 추정)

  • Ahn, Joong-Bae;Hur, Jina;Lim, A-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • This study estimates and evaluates the daily January temperature from 2003 to 2012 with 30 m-resolution over South Korea, using a modified Parameter-elevation Regression on Independent Slopes Model (K-PRISM). Several factors in K-PRISM are also adjusted to 30 m grid spacing and daily time scales. The performance of K-PRISM is validated in terms of bias, root mean square error (RMSE), and correlation coefficient (Corr), and is then compared with that of inverse distance weighting (IDW) and hypsometric methods (HYPS). In estimating the temperature over Jeju island, K-PRISM has the lowest bias (-0.85) and RMSE (1.22), and the highest Corr (0.79) among the three methods. It captures the daily variation of observation, but tends to underestimate due to a high-discrepancy in mean altitudes between the observation stations and grid points of the 30 m topography. The temperature over South Korea derived from K-PRISM represents a detailed spatial pattern of the observed temperature, but generally tends to underestimate with a mean bias of -0.45. In bias terms, the estimation ability of K-PRISM differs between grid points, implying that care should be taken when dealing with poor skill area. The study results demonstrate that K-PRISM can reasonably estimate 30 m-resolution temperature over South Korea, and reflect topographically diverse signals with detailed structure features.

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

Sensitivity Validation Technique for Sequential Kriging Metamodel (순차적 크리깅 메타모델의 민감도 검증법)

  • Huh, Seung-Kyun;Lee, Jin-Min;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.873-879
    • /
    • 2012
  • Metamodels have been developed with a variety of design optimization techniques in the field of structural engineering over the last decade because they are efficient, show excellent prediction performance, and provide easy interconnections into design frameworks. To construct a metamodel, a sequential procedure involving steps such as the design of experiments, metamodeling techniques, and validation techniques is performed. Because validation techniques can measure the accuracy of the metamodel, the number of presampled points for an accurate kriging metamodel is decided by the validation technique in the sequential kriging metamodel. Because the interpolation model such as the kriging metamodel based on computer experiments passes through responses at presampled points, additional analyses or reconstructions of the metamodels are required to measure the accuracy of the metamodel if existing validation techniques are applied. In this study, we suggest a sensitivity validation that does not require additional analyses or reconstructions of the metamodels. Fourteen two-dimensional mathematical problems and an engineering problem are illustrated to show the feasibility of the suggested method.

Face Relighting Based on Virtual Irradiance Sphere and Reflection Coefficients (가상 복사조도 반구와 반사계수에 근거한 얼굴 재조명)

  • Han, Hee-Chul;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.339-349
    • /
    • 2008
  • We present a novel method to estimate the light source direction and relight a face texture image of a single 3D model under arbitrary unknown illumination conditions. We create a virtual irradiance sphere to detect the light source direction from a given illuminated texture image using both normal vector mapping and weighted bilinear interpolation. We then induce a relighting equation with estimated ambient and diffuse coefficients. We provide the result of a series of experiments on light source estimation, relighting and face recognition to show the efficiency and accuracy of the proposed method in restoring the shading and shadows areas of a face texture image. Our approach for face relighting can be used for not only illuminant invariant face recognition applications but also reducing visual load and Improving visual performance in tasks using 3D displays.

Face Region Detection using a Color Union Model and The Levenberg-Marquadt Algorithm (색상 조합 모델과 LM(Levenberg-Marquadt)알고리즘을 이용한 얼굴 영역 검출)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.255-262
    • /
    • 2007
  • This paper proposes an enhanced skin color-based detection method to find a region of human face in color images. The proposed detection method combines three color spaces, RGB, $YC_bC_r$, YIQ and builds color union histograms of luminance and chrominance components respectively. Combined color union histograms are then fed in to the back-propagation neural network for training and Levenberg-Marquadt algorithm is applied to the iteration process of training. Proposed method with Levenberg-Marquadt algorithm applied to training process of neural network contributes to solve a local minimum problem of back-propagation neural network, one of common methods of training for face detection, and lead to make lower a detection error rate. Further, proposed color-based detection method using combined color union histograms which give emphasis to chrominance components divided from luminance components inputs more confident values at the neural network and shows higher detection accuracy in comparison to the histogram of single color space. The experiments show that these approaches perform a good capability for face region detection, and these are robust to illumination conditions.

DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities (UAV 영상을 활용한 수변구조물의 DSM 생성 및 정확도 분석)

  • Rhee, Sooahm;Kim, Taejung;Kim, Jaein;Kim, Min Chul;Chang, Hwi Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2015
  • If the damage analysis on river-side facilities such as dam, river bank structures and bridges caused by disasters such as typhoon, flood, etc. becomes available, it can be a great help for disaster recovery and decision-making. In this research, We tried to extract a Digital Surface Model (DSM) and analyze the accuracy from Unmanned Air Vehicle (UAV) images on river-side facilities. We tried to apply stereo image-based matching technique, then extracted match results were united with one mosaic DSM. The accuracy was verified compared with a DSM derived from LIDAR data. Overall accuracy was around 3m of absolute and root mean square error. As an analysis result, we confirmed that exterior orientation parameters exerted an influence to DSM accuracy. For more accurate DSM generation, accurate EO parameters are necessary and effective interpolation and post process technique needs to be developed. And the damage analysis simulation with DSM has to be performed in the future.