• Title/Summary/Keyword: Interpolation Model

Search Result 704, Processing Time 0.03 seconds

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

THE WATERSHED MANAGEMENT AND ASSESSMENT USING GIS BASED ON HYDROLOGICAL AND LANDSCAPE ECOLOGICAL ANALYSIS

  • Lee, Ju-Young;Hopkins, James
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 2006
  • The watersheds are functional geographical areas that integrate a variety of environmental and ecological processes and human impacts on landscapes. Geographical assessments using GIS recognize the relationship between interdependence of resources and ecological/environmental components in watersheds. They are useful methodology for viable long term natural resource management. This paper performs through the using hydrological analyses, landscape ecological analyses, remote sensing, and GIS. Indicators are items or measures that represent key components of the small watersheds, and they are developed to be evaluated. Some indicators are described that they represent watershed condition and trend as well as focus on physical, biological and chemical properties of small watershed. Also, ecological functions such as stability, resilience, and sensitivity are inferred from them. The model implemented in GIS allows to reflect the ecological and hydrological functioning of watershed. Methodology from image analysis, landscape ecological analysis, spatial interpolation, and numerical process modeling are integrated within GIS to provide assessment for eco-logical/environmental condition. Results are described from the small watershed of Gwynns Falls in Baltimore County and Baltimore City, Maryland, an area of about 66.5 square miles. The small watershed within Gwynns Falls watershed are subject to a number of land-use. But it is predominantly urban, with significantly lesser amounts of forest and agriculture. The increasing urbanization is ass-coiated with ecological/environmental impacts and citizen conflicts.

  • PDF

Design of Efficient Transmission Method of Elevation Information in Mobile GIS Environments (모바일 GIS 환경에서 효율적인 고도 정보의 전송 기법 설계)

  • Choi, Jin-Oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.79-82
    • /
    • 2008
  • For expression of isogram in mobile GIS environments, the client needs to receive the value data with the topographical map from a server. At this point, a client can't get the entire raw data because of the mobile characteristics. The approach to get representative points and to make isogram by interpolation methods, has some problems. The approach requires huge computing overhead at the client and doesn't guarantee the correctness of the isogram. In this paper, a data structure and algorithm for efficient transmission of contour information to a client which is constructed from a elevation information at a server, arc proposed. A proposed methods are focused at minimizing the transmission data volume and time.

  • PDF

24-Hour Load Forecasting For Anomalous Weather Days Using Hourly Temperature (시간별 기온을 이용한 예외 기상일의 24시간 평일 전력수요패턴 예측)

  • Kang, Dong-Ho;Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1144-1150
    • /
    • 2016
  • Short-term load forecasting is essential to the electricity pricing and stable power system operations. The conventional weekday 24-hour load forecasting algorithms consider the temperature model to forecast maximum load and minimum load. But 24-hour load pattern forecasting models do not consider temperature effects, because hourly temperature forecasts were not present until the latest date. Recently, 3 hour temperature forecast is announced, therefore hourly temperature forecasts can be produced by mathematical techniques such as various interpolation methods. In this paper, a new 24-hour load pattern forecasting method is proposed by using similar day search considering the hourly temperature. The proposed method searches similar day input data based on the anomalous weather features such as continuous temperature drop or rise, which can enhance 24-hour load pattern forecasting performance, because it uses the past days having similar hourly temperature features as input data. In order to verify the effectiveness of the proposed method, it was applied to the case study. The case study results show high accuracy of 24-hour load pattern forecasting.

Comparative study on the areal rainfall in Jeju region according to the spatial interpolation scheme (강수의 공간보간 기법에 따른 제주 면적강수량 비교)

  • Um, Myung-Jin;Lee, Jeong-Eun;Jung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.931-931
    • /
    • 2012
  • 제주지역의 강수자료는 최근에 이르러 69개 지점으로 증가하여 비교적 밀도있는 강수관측이 진행되고 있다. 그러나 기존의 자료 증설 내역과 이설 등으로 인해 과거로부터 현재에 이르는 자료를 기반으로 면적강수량을 산정할 경우 다소 어려움이 있다. 본 연구에서는 1992년부터 2010년까지의 강수자료를 바탕으로 관측소 개수를 기반으로 기간을 구분하여 각 기간별로 공간보간기법별로 면적강수량을 산정하고 이를 비교하였다. 사용한 공간보간기법은 PRISM(Parameter-elevation Regressions on Independent Slopes Model)기법과 티센(Thiessen)법으로 19년간의 일강수량 자료를 바탕으로 각각 면적강수량을 산정했다. PRISM기법을 이용한 경우는 고도, 관측점으로부터의 거리, 방향성 분석 및 해안가중치를 고려하여 계산하였고, 티센법의 경우는 기간별로 상이한 티센망을 구축하여 산정하였다. 지점 관측강수량에서 고도가 증가할수록 강수량이 증가하는 제주형 산악효과가 나타났으며 이는 보간기법에 의한 결과에서도 동일하게 나타나는 것으로 확인되었다. 또한 고도에 따른 상관성은 PRISM기법에 의한 결과에서 더 높게 산정되는 것으로 나타났다. 기법별 산정된 면적강수량은 근소한 차이를 보였으며 PRISM기법에 의한 값이 티센법에 비해 약 1%정도 크게 계산되었다.

  • PDF

Estimation of evapotranspiration in South Korea using Terra MODIS images and METRIC model (Terra MODIS 위성영상과 METRIC 모형을 이용한 전국 증발산량 산정)

  • Kim, Jin Uk;Lee, Yong Gwan;Chung, Jee Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.103-103
    • /
    • 2019
  • 본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.

  • PDF

Numerical modelling for evaluating the TMD performance in an industrial chimney

  • Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.263-274
    • /
    • 2013
  • A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Structural Optimization of an LMU Using Approximate Model (근사모델을 이용한 의 구조최적설계)

  • Han, Dong-Seop;Jang, Si-Hwan;Park, Soon-Hyeong;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.75-82
    • /
    • 2018
  • This study suggests an optimal design process of an LMU, which is installed on the top side of offshore structures. The LMU is consist of EB(elastomeric bearing) and steel plate, and supports the vertical loads of offshore structures and assists its stable installation. The structural design requirement of the LMU is related to its stiffness. This study utilizes the finite element analysis to predict the stiffness. The stiffness of the EB depends on the size of the bearing. Thus, the design variables in this study are defined as the thickness, the width and the number of plates. Since the LMU has different loads for different locations, its stiffness should be designed differently. The multiobjective function is introduced to attain the target stiffness. In this process, the metamodel using the kriging interpolation method is adopted to replace the true stiffness.

An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils

  • Chen, Guang-hui;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • Based on the results of Han et al. (2016), in the failure zone ahead of the tunnel face it can be obviously identified that a shear failure band occurs in the lower part and a pressure arch happens at the upper part, which was often neglected in analyzing the face stability of shield tunnel. In order to better describe the collapse failure feature of the tunnel face, a new improved failure mechanism is proposed to evaluate the face stability of shield tunnel excavated in layered soils in the framework of limit analysis by using spatial discretization technique and linear interpolation method in this study. The developed failure mechanism is composed of two parts: i) the rotational failure mechanism denoting the shear failure band and ii) a uniformly distributed force denoting the pressure arch effect. Followed by the comparison between the results of critical face pressures provided by the developed model and those by the existing works, which indicates that the new developed failure mechanism provides comparatively reasonable results.