• Title/Summary/Keyword: Interpolation Accuracy

Search Result 459, Processing Time 0.042 seconds

시간별 기온을 이용한 예외 기상일의 24시간 평일 전력수요패턴 예측 (24-Hour Load Forecasting For Anomalous Weather Days Using Hourly Temperature)

  • 강동호;박정도;송경빈
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1144-1150
    • /
    • 2016
  • Short-term load forecasting is essential to the electricity pricing and stable power system operations. The conventional weekday 24-hour load forecasting algorithms consider the temperature model to forecast maximum load and minimum load. But 24-hour load pattern forecasting models do not consider temperature effects, because hourly temperature forecasts were not present until the latest date. Recently, 3 hour temperature forecast is announced, therefore hourly temperature forecasts can be produced by mathematical techniques such as various interpolation methods. In this paper, a new 24-hour load pattern forecasting method is proposed by using similar day search considering the hourly temperature. The proposed method searches similar day input data based on the anomalous weather features such as continuous temperature drop or rise, which can enhance 24-hour load pattern forecasting performance, because it uses the past days having similar hourly temperature features as input data. In order to verify the effectiveness of the proposed method, it was applied to the case study. The case study results show high accuracy of 24-hour load pattern forecasting.

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

회전하는 환상 디스크의 면내 고유진동 해석 (In-plane Natural Vibration Analysis of a Rotating Annular Disk)

  • 송승관;곽동희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Shape sensing with inverse finite element method for slender structures

  • Savino, Pierclaudio;Gherlone, Marco;Tondolo, Francesco
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.217-227
    • /
    • 2019
  • The methodology known as "shape sensing" allows the reconstruction of the displacement field of a structure starting from strain measurements, with considerable implications for structural monitoring, as well as for the control and implementation of smart structures. An approach to shape sensing is based on the inverse Finite Element Method (iFEM) that uses a variational principle enforcing a least-squares compatibility between measured and analytical strain measures. The structural response is reconstructed without the knowledge of the mechanical properties and load conditions but based only on the relationship between displacements and strains. In order to efficiently apply iFEM to the most common structural typologies of civil engineering, its formulation according to the kinematical assumptions of the Bernoulli-Euler theory is presented. Two beam inverse finite elements are formulated for different loading conditions. Depending on the type of element, the relationship between the minimum number of required measurement stations and the interpolation order is defined. Several examples representing common applications of civil engineering and involving beams and frames are presented. To simulate the experimental strain data at the station points and to verify the accuracy of the displacements obtained with the iFEM shape sensing procedure, a direct FEM analysis of the considered structures is performed using the LUSAS software.

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

Machining Center의 2차원 원호보간정밀도 진단 System의 개발 (A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers)

  • 김정순;남궁석;제정신
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

Image-based rainfall prediction from a novel deep learning method

  • Byun, Jongyun;Kim, Jinwon;Jun, Changhyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2021
  • Deep learning methods and their application have become an essential part of prediction and modeling in water-related research areas, including hydrological processes, climate change, etc. It is known that application of deep learning leads to high availability of data sources in hydrology, which shows its usefulness in analysis of precipitation, runoff, groundwater level, evapotranspiration, and so on. However, there is still a limitation on microclimate analysis and prediction with deep learning methods because of deficiency of gauge-based data and shortcomings of existing technologies. In this study, a real-time rainfall prediction model was developed from a sky image data set with convolutional neural networks (CNNs). These daily image data were collected at Chung-Ang University and Korea University. For high accuracy of the proposed model, it considers data classification, image processing, ratio adjustment of no-rain data. Rainfall prediction data were compared with minutely rainfall data at rain gauge stations close to image sensors. It indicates that the proposed model could offer an interpolation of current rainfall observation system and have large potential to fill an observation gap. Information from small-scaled areas leads to advance in accurate weather forecasting and hydrological modeling at a micro scale.

  • PDF

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

산림지역에서의 LiDAR DEM 정확도 향상을 위한 FUSION 패러미터 선정에 관한 연구 (A Study on the Selection of Parameter Values of FUSION Software for Improving Airborne LiDAR DEM Accuracy in Forest Area)

  • 조승완;박주원
    • 한국산림과학회지
    • /
    • 제106권3호
    • /
    • pp.320-329
    • /
    • 2017
  • 본 연구는 항공 LiDAR DEM을 생산하는 FUSION 소프트웨어의 GroundFilter 모듈의 필터링 알고리즘(FA)과 GridSurfaceCreate 모듈의 보간 알고리즘(IA) 패러미터 수준 변화의 DEM 정확도에 대한 영향여부를 평가하고, 가장 정확한 해발고도 정보를 제공하는 LiDAR DEM을 생산하기 위한 패러미터 수준을 제시하고자 하였다. FA의 median 패러미터($F_{md}$), mean 패러미터($F_{mn}$) 및 IA의 median 패러미터($I_{md}$), mean 패러미터($I_{mn}$)에 대해 5개 수준(1, 3, 5, 7 및 9)을 적용한 조합의 변화에 따라 DEM의 정확도에 대한 영향 여부를 평가하기 위해 DEM 결과물의 해발고도와 실측한 현장 해발고도 간의 잔차를 종속변수로 선정하였다. 이후 패러미터의 수준 변화가 잔차 변화에 대한 영향 여부를 검정하는 다원분산분석을 실시하고, 다원분산분석 결과에서 유의미한 영향이 있는 변수의 패러미터 수준들을 잔차에 대한 영향이 차이가 나는 집단으로 그룹화하기 위해 사후검정인 Tukey HSD를 수행하였다. 다원분산분석 결과, 개별 $F_{md}$, $F_{mn}$, $I_{mn}$에서의 수준 변화와 잔차 변화 사이에 유의미한 관계가 있었으며, $I_{mn}$은 유의미한 영향이 없었다. 아울러 $F_{md}$$F_{mn}$의 패러미터 조합의 상호작용효과가 잔차 변화에 유의미한 영향을 미치는 것으로 나타났다. 이에 따라 $F_{md}$$F_{mn}$의 수준 및 $F_{md}{\ast}F_{mn}$ 상호작용 수준 그리고 $I_{mn}$의 수준이 DEM 정확도에 영향을 주는 요인으로 판단된다. $F_{md}{\ast}F_{mn}$의 조합에 대한 사후검정 결과, 잔차들의 평균 차이에 따라 네 개의 집단으로 나뉘었으며, 그중 '$9{\ast}3$' 조합이 가장 정확도가 높았으며, '$1{\ast}1$' 조합이 가장 낮은 정확도를 나타내었다. $I_{mn}$의 사후검정 결과, 세 개의 집단으로 나뉘었으며, 그중 수준 '3'과 '1'이 가장 낮은 잔차 평균값을 나타내었다. 따라서 가장 정확한 해발고도 정보를 제공하는 항공 LiDAR DEM의 생성을 위하여 $F_{md}{\ast}F_{mn}$의 조합이 수준 '$9{\ast}3$', $I_{mn}$은 수준 '3' 혹은 '1'인 조건을 우선적으로 고려해야할 것으로 판단된다. 본 연구는 LiDAR 자료 기반의 산림속성정보를 추출하는 연구들의 정확도 향상에 기여할 수 있을 것으로 사료된다.

높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기 (A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors)

  • 문경준;이경훈;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제43권12호
    • /
    • pp.55-64
    • /
    • 2006
  • 본 설계에서는 무선 랜 등 최첨단 무선 통신 및 고급영상 처리 시스템과 같이 고해상도와 높은 신호처리속도, 저전력 및 소면적을 동시에 요구하는 고성능 집적시스템 응용을 위해 기존의 보정기법을 사용하지 않는 14b 70MS/s 0.13um CMOS A/D 변환기(Analog-to-Digital Converts- ADC)를 제안한다. 제안하는 がU는 중요한 커패시터 열에 인접신호에 덜 민감한 3차원 완전 대칭 구조의 레이아웃 기법으로 소자 부정합에 의한 영향을 최소화하였고, 3단 파이프라인 구조로 고해상도와 높은 신호처리속도와 함께 전력 소모 및 면적을 최적화하였다. 입력 단 SHA 회로에는 Nyquist 입력에서도 14비트 이상의 정확도로 신호를 샘플링하기 위해 게이트-부트스트래핑 (gate-bootstrapping) 회로를 적용함과 동시에 트랜스컨덕턴스 비율을 적절히 조정한 2단 증폭기를 사용하여 14비트에 필요한 높은 DC전압 이득을 얻음과 동시에 충분한 위상 여유를 갖도록 하였으며, 최종 단 6b flash ADC에는 6비트 정확도 구현을 위해 2단 오픈-루프 오프셋 샘플링 기법을 적용하였으며, 기준 전류 및 전압 발생기는 온-칩으로 집적하여 잡음을 최소화하면서 필요시 선택적으로 다른 크기의 기준 전압 값을 외부에서 인가할 수 있도록 하였다. 제안하는 시제품 ADC는 0.13um CMOS 공정으로 요구되는 2.5V 전원 전압 인가를 위해 최소 채널길이는 0.35um를 사용하여 제작되었으며, 측정된 DNL 및 INL은 14비트 해상도에서 각각 0.65LSB, 1.80LSB의 수준을 보이며, 70MS/s의 샘플링 속도에서 최대 SNDR 및 SFDR은 각각 66dB, 81dB를 보여준다. 시제품 ADC의 칩 면적은 $3.3mm^2$이며 전력 소모는 2.5V 전원 전압에서 235mW이다.