• Title/Summary/Keyword: Interneuron

Search Result 10, Processing Time 0.034 seconds

Ultrastructure of Ocellar Never System in Drosophila melanogaster (초파리 단안 신경계의 미세형태학적연구)

  • 윤춘식
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.709-714
    • /
    • 1999
  • Ultrastructure of ocellar system was studied in adult Drosophila melanogaster. Ocellus was composed of terminal receptors, interneuron and glia. These three part showed different brightness each other and each component was distinct. In the glial cell, rER was abundant, and terminal receptors and interneuron showed numerous microtubules, special transporting system. The terminal receptors have particular structure referred as capital projection connecting the terminal receptor to glia. In synaptic active zone between terminal receptor and interneuron, ribbon-like structures and synaptic vesicles around the structures were frequently observed. In addition, the cross section of giant interneuron was also observed.

  • PDF

Design of an Efficient VLSI Architecture for Collision Detection Based on Insect's Visual Interneuron (곤충의 시각 신경망 기반 충돌감지 기술의 효율적인 VLSI 구조 설계)

  • Jeong, Sooyong;Lee, Jaehyeon;Song, Deokyong;Park, Taegeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1671-1677
    • /
    • 2018
  • In this research, the collision detection system based on insect's visual interneuron has been designed. The lobula giant movement detector (LGMD) corresponds to the movement value that increases in direct collision process. If the collision is detected by the LGMD only, it could generate a crash warning even in a non-collision situation, resulting in a lot of false alarms. Directionally sensitive movement detectors (DSMD) are directionally sensitive algorithm based on the elementary movement detectors (EMD) in four directions (up, down, left, and right). In this paper, we propose an efficient VLSI architecture for a realtime collision detection system that is robust to the surrounding environment while improving accuracy. The proposed architecture is synthesized with Dongbu Hightech 110nm standard cell library and shows 333MHz of maximum operating frequency and requires 8400 gates with about 16.5KB of internal memories.

Morus Nigra Extract Attenuates Cognition Impairment and GABAergic Interneuron Degeneration in Aged Rat Brain

  • Lee, Joo Hee;Kim, Yoonju;Song, Min Kyung;Kim, Youn-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • Purpose: Aging process comes with cognitive impairment due to decreased neuronal cell number, activity, and neuronal circuit. Alteration of inhibitory neurons contributes to cognitive impairment in normal aging and is responsible for disrupting the excitation/inhibition balance by reducing the synthesis of gamma-aminobutyric acid (GABA). Morus nigra (Mulberry) is a natural physiologically active substance that has been proven to have anti-oxidant, anti-diabetic, and anti-inflammatory effects through many studies. This study aimed to evaluate the effects of the mulberry extract (ME) on cognitive function through anti-oxidant enzyme and GABAergic neuronal activity in aged rat brain. Methods: Sprague Dawley rats were randomly assigned as the young group (8 weeks, n= 8), aging group (67 weeks, n= 8), and aging+ mulberry extract group (67 weeks, n= 8). The aging+ mulberry extract group was orally administered 500 mg/kg/d mulberry extract for 6 weeks. Results: The aging+ mulberry extract group improved spatial and short-term memory. The antioxidant potential of ME increased the expression of superoxide dismutase-1 (SOD-1) and decreased inducible nitric oxide synthase (iNOS). Also, the aging+ mulberry extract group significantly increased the expression of GABAergic interneuron in hippocampus cornu ammonis1 (CA1) compared to the aging group. Conclusion: The number of GABAergic inhibitory interneurons was deceased and memory functions in the aging process, but those symptoms were improved and restored by mulberry extract administration.

Distinct Developmental Features of Olfactory Bulb Interneurons

  • Kim, Jae Yeon;Choe, Jiyun;Moon, Cheil
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.215-221
    • /
    • 2020
  • The olfactory bulb (OB) has an extremely higher proportion of interneurons innervating excitatory neurons than other brain regions, which is evolutionally conserved across species. Despite the abundance of OB interneurons, little is known about the diversification and physiological functions of OB interneurons compared to cortical interneurons. In this review, an overview of the general developmental process of interneurons from the angles of the spatial and temporal specifications was presented. Then, the distinct features shown exclusively in OB interneurons development and molecular machinery recently identified were discussed. Finally, we proposed an evolutionary meaning for the diversity of OB interneurons.

The Morphologic Changes of Parvalbumin- Immunoreactive Interneurons of the Dentate Gyrus in Kainate-Treated Mouse Hippocampal Slice Culture Epilepsy Model (Kainic Acid로 처리한 해마박편배양 마우스 간질모델에서 치아이랑 Parvalbumin 면역 반응성 사이신경세포의 형태학적 변화)

  • Chung, Hee Sun;Shin, Mi-Young;Kim, Young-Hoon;Lee, In-Goo;Whang, Kyung-Tai;Kim, Myung-Suk
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.12
    • /
    • pp.1551-1558
    • /
    • 2002
  • Purpose : Loss of hippocampal interneurons in dentate gyrus has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainic acid(KA). Interneurons contain $Ca^{2+}$- binding protein parvalbumin(PV). The effects of kainic acid on parvalbumin-immunoreactive (PV-IR) interneurons in dentate gyrus were investigated in organotypic hippocampal slice cultures. Methods : Cultured hippocampal slices from postnatal day nine C57/BL6 mice were exposed to $10{\mu}M$ KA, and were observed at 0, 8, 24, 48, 72 hours after a one hour KA exposure. Neuronal injury was determined by morphologic changes of PV-IR interneuron in dentate gyrus. Results : Transient(1 hour) exposure of hippocampal explant cultures to KA produced marked varicosities in dendrites of PV-IR interneuron in dentate gyrus and the shaft of interbeaded dendrite is often much thinner than those in control. The presence of varicosities in dendrites was reversible with KA washout. The dendrites of KA treated explants were no longer beaded at 8, 24, 48 and 72 hours after KA exposure. The number of cells in PV-IR interneurons in dentate gyrus was decreased at 0, 8 hours after exposure. But there was no significant difference in 24, 48 and 72 hours recovery group compared with control group. Conclusion : The results suggested that loss of PV-IR interneurons in dentate gyrus is transient, and is not accompanied by PV-IR interneuronal cell death.

Calretinin-Containing Neurons in the Deeper Layers of the Hamster Superior Colliculus (햄스터 상구의 deeper layers에서 calretinin이 함유 신경세포)

  • Kim, Ye-Eun;Choi, Jae-Sik;Kim, Hye-Hyun;Yeo, Jin-Yeon;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.750-758
    • /
    • 2006
  • Calcium-binding protein calretinin is thought to play important roles in calcium buffering. Recently, we reported on the distribution, morphology of calretinin-immunoreactive (IR) neurons and the effects of eye enucleation on the immunoreactivity of calretinin in the superficial layers of the hamster superior colliculus (SC). In the present study, we describe the distributions and types of labeled cells and effects of enucleation in the deeper layers by immunocytochemistry. We also compare this labeling to that of GABA, the major inhibitory neurotransmitter in the central nervous system. In contrast to the superficial layers, the deeper layers contained many calretinin-IR neurons which formed two tiers. The first tier, which was very distinctive, was found within the intermediate gray layer. The second tier was found in the deep gray layer. Labeled neurons varied dramatically in morphology and included vertical fusiform, stellate, round/oval, and horizontal neurons. In contrast to the superficial layers, enucleation appeared to have no effect on the distribution of calretinin immunoreactivity in the deeper layers. Two-color immunofluorescence revealed that none of calretinin-IR neurons were labeled with an antibody to GABA. The present results demonstrate that calretinin identifies unique neuronal sublaminar organizations in the hamster SC. The present results also demonstrate that none of the calretinin-IR neurons in the hamster SC is GABAergic interneurons. As many calretinin-IR cells are GABAergic interneurons in most other brain areas, this phenomenon in hamster SC is exceptional.

Electrophysiological and Morphological Classification of Inhibitory Interneurons in Layer II/III of the Rat Visual Cortex

  • Rhie, Duck-Joo;Kang, Ho-Young;Ryu, Gyeong-Ryul;Kim, Myung-Jun;Yoon, Shin-Hee;Hahn, Sang-June;Min, Do-Sik;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.317-323
    • /
    • 2003
  • Interneuron diversity is one of the key factors to hinder understanding the mechanism of cortical neural network functions even with their important roles. We characterized inhibitory interneurons in layer II/III of the rat primary visual cortex, using patch-clamp recording and confocal reconstruction, and classified inhibitory interneurons into fast spiking (FS), late spiking (LS), burst spiking (BS), and regular spiking non-pyramidal (RSNP) neurons according to their electrophysiological characteristics. Global parameters to identify inhibitory interneurons were resting membrane potential (>-70 mV) and action potential (AP) width (<0.9 msec at half amplitude). FS could be differentiated from LS, based on smaller amplitude of the AP (<∼50 mV) and shorter peak-to-trough time (P-T time) of the afterhyperpolarization (<4 msec). In addition to the shorter AP width, RSNP had the higher input resistance (>200 $M{Omega}$) and the shorter P-T time (<20 msec) than those of regular spiking pyramidal neurons. Confocal reconstruction of recorded cells revealed characteristic morphology of each subtype of inhibitory interneurons. Thus, our results provide at least four subtypes of inhibitory interneurons in layer II/III of the rat primary visual cortex and a classification scheme of inhibitory interneurons.

Alterations of Calcium-binding Protein Immunoreactivities in the Hippocampus Following Traumatic Brain Injury (외상성 뇌손상 후 해마내 칼슘결합단백질 면역반응의 변화)

  • Oh, Yun-Jung;Kim, Baek-Seon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.235-248
    • /
    • 2011
  • Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adults and is a major risk factor for the development of posttraumatic epilepsy (PTE). Recent studies have provided significant insight into the pathophysiological mechanisms underlying the development of epilepsy. Although the link between brain trauma and epilepsy is well recognized, the complex biological mechanisms that result in PTE following TBI have not been fully elucidated. Therefore, this study investigated in order to identify whether or not the abnormal expression of calcium-binding proteins in the lesioned hippocampus plays a role in neuronal damage by brain trauma and whether or not the expressions may change in the contralateral hippocampus during the adaptive stage as early time point following TBI. During early time point following TBI, both parvalbumin (PV) and calbindin D-28k (CB) immunoreactivities were decreased with in the lesioned hippocampus. However, these expressions were recovered to control levels as depend on time courses. On the other hand, PV immunoreactivity in contralateral hippocampus was transiently reduced as compared to the control levels, whereas CB expression was unchanged. These findings indicate that the alterations of the calcium-binding proteins, especially PV and CB, may contribute to the neuronal death and/or damage induced by abnormal inhibitory neurotransmission at early time period following brain trauma and the development of epileptogenesis in patients with traumatic brain injury.

ELECTROPHYSIOLOGICAL CHARACTERISTICS OF GABAERGIC INHIBITION IN THE HIPPOCAMPAL CA1 OF THE RAT IN VIVO (생체내 흰쥐 해마 CA1 세포에서 가바성 억제에 대한 전기생리학 특성)

  • Choi, Byung-Ju;Cho, Jin-Hwa;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.7-14
    • /
    • 2000
  • Inhibitory cells are critically involved in shaping normal hippocampal function and are thought to be important elements in the development of hippocampal pathologies. The present study was carried out in hippocampal CA1 area in vivo to compare with hippocampal slice studies. Intracellular and extracellular recordings with or without bicuculline electrodes were obtained in the intact brain of anesthetized rats, and cells were intracellularty labelled with neurobiotin. Electrical stimulation of fimbria-fornix resulted in an initial short-latency population spike. In the presence of $10{\mu}M$ bicuculline, orthodromic stimulation resulted in bursts of population spikes. The amplitude of population spikes in the CA1 region increased with stimulus intensity, as did the number of population spikes when the field recording electrode contained $10{\mu}M$ bicuculline. We measured the level of excitability in the CA1 area, using a paired-pulse stimulus paradigm to evoke population spikes. Population spikes showed strong paired-pulse inhibition at short interstimulus intervals. Burst afterdischarges up to 400 ms were observed after paired-pulse stimulus. These result suggest that hippocampal CA1 inhibitory interneurons can affect the excitability of pyramidal neurons that can not be appreciated in conventional in vitro preparation.

  • PDF

The Effect of Geupoongjibo-dan Extracts on Reversible Forebrain Ischemia in Mongolian Gerbil (거풍지보단(祛風至寶丹)이 Mongolian Gerbil의 가역성 전뇌허혈 모델에 미치는 영향)

  • Jeong, Wan-Woo;Park, In-Sick;Shin, Gil-Cho;Lee, Won-Chul;Jeong, Sung-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.145-160
    • /
    • 2001
  • Objectives : The purpose of this investigation is to evaluate the effect of Geupoongjibo-dan Extracts on Reversible Forebrain Ischemia in Mongolian Gerbils. Methods : The change rate of water content in cerebral tissues, the numercal change of the CA1 pyramidal neuron in the hippocampus, the change of delayed neuronal death(necrosis apoptosis) through light microscopy, the reactivity change of glycoprotein in neuronal membrane and the ultrastructural change of pyramidal neuron through electron microscopy caused by dalayed neuronal death were investigated. Results : 1. The change rate of water content in the normal group showed 78.90% on the third day, and 79.12% on the seventh day after an attack of ischemia. The rate in the control group showed 82.25% and 85.13%, respectively. The rate in the sample group showed a significant decrease: 81.72% and 83.66%. 2. Light microscopy revealed that the cells, continuous and systematic forms in the pyramidal cells of hippocampus, changed into discontinuous and unsystematic forms in the normal group when compared with the control group. The cells were less damaged in the sample group. 3. The mean of the numerical change of the CA1 pyramidal neurons in the hippocampus was 104 in the normal group. The mean of the control group was decreased to 27. The mean of the sample group was 44. 4. TUNEL staining examination reveals that the whole part of the hippocampus of the normal group had negative reactivity. As far as CA1 pyramidal neurons in the hippocampus, the control group had positive reactivity. The sample group was more positive than the control group. 5. Electron microscopy reveals that the ischemic injury of the control group had both necrotic and apoptotic morphology. The sample group was less necrotic, and more apoptotic morphology than the control group. 6. Lectin histochemisrical examination reveals that the normal group had positive reactivity to PNA and SBA in interneuron, and weak positive reactivity to WGA Con A LCA in intercelluar space. The reactivity to PNA and WGA decreased in the control group. The reactivity to PNA and WGA tended to increase in the sample group. Conclusions : The data shows that the effect of Geupoongjibo-dan Extracts on Reversible Forebrain Ischemia in MG is a significant result.

  • PDF