References
- Alvarez-Buylla, A., Garcia-Verdugo, J.M., and Tramontin, A.D. (2001). A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287-293. https://doi.org/10.1038/35067582
- Anderson, J.S., Carandini, M., and Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909-926. https://doi.org/10.1152/jn.2000.84.2.909
- Ashwin, C., Chapman, E., Howells, J., Rhydderch, D., Walker, I., and Baron-Cohen, S. (2014). Enhanced olfactory sensitivity in autism spectrum conditions. Mol. Autism 5, 53. https://doi.org/10.1186/2040-2392-5-53
- Bandler, R.C., Mayer, C., and Fishell, G. (2017). Cortical interneuron specification: the juncture of genes, time and geometry. Curr. Opin. Neurobiol. 42, 17-24. https://doi.org/10.1016/j.conb.2016.10.003
- Bartolini, G., Ciceri, G., and Marin, O. (2013). Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron 79, 849-864. https://doi.org/10.1016/j.neuron.2013.08.014
- Batista-Brito, R., Close, J., Machold, R., and Fishell, G. (2008). The distinct temporal origins of olfactory bulb interneuron subtypes. J. Neurosci. 28, 3966-3975. https://doi.org/10.1523/JNEUROSCI.5625-07.2008
- Batista-Brito, R. and Fishell, G. (2009). The developmental integration of cortical interneurons into a functional network. Curr. Top. Dev. Biol. 87, 81-118. https://doi.org/10.1016/S0070-2153(09)01203-4
- Bayer, S.A. (1983). 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp. Brain Res. 50, 329-340.
- Bovetti, S., Peretto, P., Fasolo, A., and De Marchis, S. (2007). Spatiotemporal specification of olfactory bulb interneurons. J. Mol. Histol. 38, 563-569. https://doi.org/10.1007/s10735-007-9111-8
- Burton, S.D. (2017). Inhibitory circuits of the mammalian main olfactory bulb. J. Neurophysiol. 118, 2034-2051. https://doi.org/10.1152/jn.00109.2017
- Bushdid, C., Magnasco, M.O., Vosshall, L.B., and Keller, A. (2014). Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370-1372. https://doi.org/10.1126/science.1249168
- D'Amour, J.A. and Froemke, R.C. (2015). Inhibitory and excitatory spiketiming-dependent plasticity in the auditory cortex. Neuron 86, 514-528. https://doi.org/10.1016/j.neuron.2015.03.014
- Donato, F., Chowdhury, A., Lahr, M., and Caroni, P. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron 85, 770-786. https://doi.org/10.1016/j.neuron.2015.01.011
- Fairen, A., Cobas, A., and Fonseca, M. (1986). Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J. Comp. Neurol. 251, 67-83. https://doi.org/10.1002/cne.902510105
- Fang, W.Q., Chen, W.W., Jiang, L., Liu, K., Yung, W.H., Fu, A.K.Y., and Ip, N.Y. (2014). Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Rep. 9, 1635-1643. https://doi.org/10.1016/j.celrep.2014.11.003
- Fertuzinhos, S., Krsnik, Z., Kawasawa, Y.I., Rasin, M.R., Kwan, K.Y., Chen, J.G., Judas, M., Hayashi, M., and Sestan, N. (2009). Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. Cereb. Cortex 19, 2196-2207. https://doi.org/10.1093/cercor/bhp009
- Fuentealba, L.C., Rompani, S.B., Parraguez, J.I., Obernier, K., Romero, R., Cepko, C.L., and Alvarez-Buylla, A. (2015). Embryonic origin of postnatal neural stem cells. Cell 161, 1644-1655. https://doi.org/10.1016/j.cell.2015.05.041
- Fujiwara, N. and Cave, J.W. (2016). Partial conservation between mice and humans in olfactory bulb interneuron transcription factor codes. Front. Neurosci. 10, 337.
- Galle, S.A., Courchesne, V., Mottron, L., and Frasnelli, J. (2013). Olfaction in the autism spectrum. Perception 42, 341-355. https://doi.org/10.1068/p7337
- Garcia, I., Quast, K.B., Huang, L., Herman, A.M., Selever, J., Deussing, J.M., Justice, N.J., and Arenkiel, B.R. (2014). Local CRH signaling promotes synaptogenesis and circuit integration of adult-born neurons. Dev. Cell 30, 645-659. https://doi.org/10.1016/j.devcel.2014.07.001
- Gomes, E., Pedroso, F.S., and Wagner, M.B. (2008). Auditory hypersensitivity in the autistic spectrum disorder. Pro Fono 20, 279-284. https://doi.org/10.1590/S0104-56872008000400013
- Greer, C.A. (1987). Golgi analyses of dendritic organization among denervated olfactory bulb granule cells. J. Comp. Neurol. 257, 442-452. https://doi.org/10.1002/cne.902570311
- Hansen, D.V., Lui, J.H., Flandin, P., Yoshikawa, K., Rubenstein, J.L., Alvarez-Buylla, A., and Kriegstein, A.R. (2013). Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat. Neurosci. 16, 1576-1587. https://doi.org/10.1038/nn.3541
- Hinds, J.W. (1968). Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. Comp. Neurol. 134, 287-304. https://doi.org/10.1002/cne.901340304
- Hu, J.S., Vogt, D., Sandberg, M., and Rubenstein, J.L. (2017). Cortical interneuron development: a tale of time and space. Development 144, 3867-3878. https://doi.org/10.1242/dev.132852
- Huang, L., Ung, K., Garcia, I., Quast, K.B., Cordiner, K., Saggau, P., and Arenkiel, B.R. (2016). Task learning promotes plasticity of interneuron connectivity maps in the olfactory bulb. J. Neurosci. 36, 8856-8871. https://doi.org/10.1523/JNEUROSCI.0794-16.2016
- Igarashi, K.M., Ieki, N., An, M., Yamaguchi, Y., Nagayama, S., Kobayakawa, K., Kobayakawa, R., Tanifuji, M., Sakano, H., Chen, W.R., et al. (2012). Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J. Neurosci. 32, 7970-7985. https://doi.org/10.1523/JNEUROSCI.0154-12.2012
- Kao, C.F. and Lee, T. (2010). Birth time/order-dependent neuron type specification. Curr. Opin. Neurobiol. 20, 14-21. https://doi.org/10.1016/j.conb.2009.10.017
- Kay, L.M. and Sherman, S.M. (2007). An argument for an olfactory thalamus. Trends Neurosci. 30, 47-53. https://doi.org/10.1016/j.tins.2006.11.007
- Kepecs, A. and Fishell, G. (2014). Interneuron cell types are fit to function. Nature 505, 318-326. https://doi.org/10.1038/nature12983
- Kim, J.Y., Cho, B., and Moon, C. (2020). Timely inhibitory circuit formation controlled by Abl1 regulates innate olfactory behaviors in mouse. Cell Rep. 30, 187-201.e4. https://doi.org/10.1016/j.celrep.2019.12.004
- Lemasson, M., Saghatelyan, A., Olivo-Marin, J.C., and Lledo, P.M. (2005). Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J. Neurosci. 25, 6816-6825. https://doi.org/10.1523/JNEUROSCI.1114-05.2005
- Lepousez, G., Nissant, A., and Lledo, P.M. (2015). Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron 86, 387-401. https://doi.org/10.1016/j.neuron.2015.01.002
- Lim, L., Mi, D., Llorca, A., and Marin, O. (2018). Development and functional diversification of cortical interneurons. Neuron 100, 294-313. https://doi.org/10.1016/j.neuron.2018.10.009
- Liu, G., Froudarakis, E., Patel, J.M., Kochukov, M.Y., Pekarek, B., Hunt, P.J., Patel, M., Ung, K., Fu, C.H., Jo, J., et al. (2019). Target specific functions of EPL interneurons in olfactory circuits. Nat. Commun. 10, 3369. https://doi.org/10.1038/s41467-019-11354-y
- Lledo, P.M., Merkle, F.T., and Alvarez-Buylla, A. (2008). Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 31, 392-400. https://doi.org/10.1016/j.tins.2008.05.006
- Lledo, P.M. and Valley, M. (2016). Adult olfactory bulb neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018945. https://doi.org/10.1101/cshperspect.a018945
- Lois, C. and Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145-1148. https://doi.org/10.1126/science.8178174
- Ma, Y., Hu, H., Berrebi, A.S., Mathers, P.H., and Agmon, A. (2006). Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069-5082. https://doi.org/10.1523/JNEUROSCI.0661-06.2006
- Maccaferri, G. and Lacaille, J.C. (2003). Interneuron diversity series: hippocampal interneuron classifications--making things as simple as possible, not simpler. Trends Neurosci. 26, 564-571. https://doi.org/10.1016/j.tins.2003.08.002
- Marco, E.J., Hinkley, L.B., Hill, S.S., and Nagarajan, S.S. (2011). Sensory processing in autism: a review of neurophysiologic findings. Pediatr. Res. 69(5 Pt 2), 48R-54R. https://doi.org/10.1203/PDR.0b013e3182130c54
- Mayer, C., Jaglin, X.H., Cobbs, L.V., Bandler, R.C., Streicher, C., Cepko, C.L., Hippenmeyer, S., and Fishell, G. (2015). Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87, 989-998. https://doi.org/10.1016/j.neuron.2015.07.011
- Mirich, J.M., Williams, N.C., Berlau, D.J., and Brunjes, P.C. (2002). Comparative study of aging in the mouse olfactory bulb. J. Comp. Neurol. 454, 361-372. https://doi.org/10.1002/cne.10426
- Mori, K. (1987). Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog. Neurobiol. 29, 275-320. https://doi.org/10.1016/0301-0082(87)90024-4
- Muthusamy, N., Zhang, X., Johnson, C.A., Yadav, P.N., and Ghashghaei, H.T. (2017). Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning. Nat. Neurosci. 20, 20-23. https://doi.org/10.1038/nn.4452
- Nagayama, S., Homma, R., and Imamura, F. (2014). Neuronal organization of olfactory bulb circuits. Front. Neural Circuits 8, 98. https://doi.org/10.3389/fncir.2014.00098
- Orona, E., Scott, J.W., and Rainer, E.C. (1983). Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb. J. Comp. Neurol. 217, 227-237. https://doi.org/10.1002/cne.902170209
- Osterhout, J.A., El-Danaf, R.N., Nguyen, P.L., and Huberman, A.D. (2014). Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep. 8, 1006-1017. https://doi.org/10.1016/j.celrep.2014.06.063
- Paredes, M.F., James, D., Gil-Perotin, S., Kim, H., Cotter, J.A., Ng, C., Sandoval, K., Rowitch, D.H., Xu, D., McQuillen, P.S., et al. (2016). Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073. https://doi.org/10.1126/science.aaf7073
- Petreanu, L. and Alvarez-Buylla, A. (2002). Maturation and death of adultborn olfactory bulb granule neurons: role of olfaction. J. Neurosci. 22, 6106-6113. https://doi.org/10.1523/JNEUROSCI.22-14-06106.2002
- Price, J.L. and Powell, T.P. (1970). The morphology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 91-123. https://doi.org/10.1242/jcs.7.1.91
- Puelles, L. and Rubenstein, J.L. (1993). Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 16, 472-479. https://doi.org/10.1016/0166-2236(93)90080-6
- Rall, W., Shepherd, G.M., Reese, T.S., and Brightman, M.W. (1966). Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44-56. https://doi.org/10.1016/0014-4886(66)90023-9
- Ramon y Cajal, S., DeFelipe, J., and Jones, E.G. (1988). Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings (New York: Oxford University Press).
- Rubenstein, J.L., Martinez, S., Shimamura, K., and Puelles, L. (1994). The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578-580. https://doi.org/10.1126/science.7939711
- Rymar, V.V. and Sadikot, A.F. (2007). Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype. J. Comp. Neurol. 501, 369-380. https://doi.org/10.1002/cne.21250
- Takahashi, H., Ogawa, Y., Yoshihara, S., Asahina, R., Kinoshita, M., Kitano, T., Kitsuki, M., Tatsumi, K., Okuda, M., Tatsumi, K., et al. (2016). A subtype of olfactory bulb interneurons is required for odor detection and discrimination behaviors. J. Neurosci. 36, 8210-8227. https://doi.org/10.1523/JNEUROSCI.2783-15.2016
- Tonacci, A., Billeci, L., Tartarisco, G., Ruta, L., Muratori, F., Pioggia, G., and Gangemi, S. (2017). [Formula: see text]Olfaction in autism spectrum disorders: a systematic review. Child Neuropsychol. 23, 1-25. https://doi.org/10.1080/09297049.2015.1081678
- Torigoe, M., Yamauchi, K., Kimura, T., Uemura, Y., and Murakami, F. (2016). Evidence that the laminar fate of LGE/CGE-derived neocortical interneurons is dependent on their progenitor domains. J. Neurosci. 36, 2044-2056. https://doi.org/10.1523/JNEUROSCI.3550-15.2016
- Tseng, C.S., Chao, H.W., Huang, H.S., and Huang, Y.S. (2017). Olfactory-experience- and developmental-stage-dependent control of CPEB4 regulates c-Fos mRNA translation for granule cell survival. Cell Rep. 21, 2264-2276. https://doi.org/10.1016/j.celrep.2017.10.100
- Wamsley, B. and Fishell, G. (2017). Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299-309. https://doi.org/10.1038/nrn.2017.30
- Wang, J.Y., Ledley, F., Goff, S., Lee, R., Groner, Y., and Baltimore, D. (1984). The mouse c-abl locus: molecular cloning and characterization. Cell 36, 349-356. https://doi.org/10.1016/0092-8674(84)90228-9
- Yoshihara, S., Takahashi, H., Nishimura, N., Kinoshita, M., Asahina, R., Kitsuki, M., Tatsumi, K., Furukawa-Hibi, Y., Hirai, H., Nagai, T., et al. (2014). Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons. Cell Rep. 8, 843-857. https://doi.org/10.1016/j.celrep.2014.06.056
- Yoshihara, S., Takahashi, H., Nishimura, N., Naritsuka, H., Shirao, T., Hirai, H., Yoshihara, Y., Mori, K., Stern, P.L., and Tsuboi, A. (2012). 5T4 glycoprotein regulates the sensory input-dependent development of a specific subtype of newborn interneurons in the mouse olfactory bulb. J. Neurosci. 32, 2217-2226. https://doi.org/10.1523/JNEUROSCI.5907-11.2012
- Zapiec, B., Dieriks, B.V., Tan, S., Faull, R.L.M., Mombaerts, P., and Curtis, M.A. (2017). A ventral glomerular deficit in Parkinson's disease revealed by whole olfactory bulb reconstruction. Brain 140, 2722-2736. https://doi.org/10.1093/brain/awx208
- Zozulya, S., Echeverri, F., and Nguyen, T. (2001). The human olfactory receptor repertoire. Genome Biol. 2, RESEARCH0018.
Cited by
- Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb vol.15, 2020, https://doi.org/10.3389/fncir.2021.718221
- COVID-19 and Parkinson’s disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia vol.115, 2021, https://doi.org/10.1016/j.jchemneu.2021.101965
- Environmental enrichment ameliorates high-fat diet induced olfactory deficit and decrease of parvalbumin neurons in the olfactory bulb in mice vol.179, 2020, https://doi.org/10.1016/j.brainresbull.2021.11.015