• Title/Summary/Keyword: Internet-of-things device

Search Result 466, Processing Time 0.029 seconds

Analysis of Security Vulnerabilities for IoT Devices

  • Kim, Hee-Hyun;Yoo, Jinho
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • Recently, the number of Internet of Things (IoT) devices has been increasing exponentially. These IoT devices are directly connected to the internet to exchange information. IoT devices are becoming smaller and lighter. However, security measures are not taken in a timely manner compared to the security vulnerabilities of IoT devices. This is often the case when the security patches cannot be applied to the device because the security patches are not adequately applied or there is no patch function. Thus, security vulnerabilities continue to exist, and security incidents continue to increase. In this study, we classified and analyzed the most common security vulnerabilities for IoT devices and identify the essential vulnerabilities of IoT devices that should be considered for security when producing IoT devices. This paper will contribute to reducing the occurrence of security vulnerabilities in companies that produce IoT devices. Additionally, companies can identify vulnerabilities that frequently occur in IoT devices and take preemptive measures.

Organizing the Smart Devices' Set for Control of Periodic Sensing Data in Internet of Things (사물인터넷에서 주기적 센싱 데이터 제어를 위한 스마트 디바이스 집합 구성 방안)

  • Sung, Yoon-young;Woo, Hyun-je;Lee, Mee-jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.758-767
    • /
    • 2017
  • IoT paradigm which makes a information without direct intervention of a human and interworks with other objects, humans and systems is attracting attention. It will be expected the number of smart devices equipped with sensors and wireless communication capabilities is reached to about 260 billion by 2020. With the vast amount of sending data generated from rapidly increasing number of smart devices, it will bring up the traffic growth over internet and congestion in wireless networks. In this paper, we utilize the smart device as a sink node to collect and forward the sensing data periodically in IoT and propose a heuristic algorithm for a selection of sink nodes' set with each sink node satisfies the QoS its applications because a selection of optimal sink nodes' set is NP-hard problem. The complexity of proposed heuristic algorithm is $O(m^3)$ and faster than the optimal algorithm.

Design and Implementation of Smart Home Remote Control Based on Internet of Things Service Platform (사물인터넷 서비스 플랫폼 기반 스마트 홈 리모컨의 설계 및 구현)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1563-1570
    • /
    • 2018
  • Internet of Things technology is rapidly becoming a reality in many parts of our lives through various product services, and product development especially in the field of smart home is being actively carried out. Most controllers for controlling various smart home products use smart phone applications. However, smart phone applications are not suitable as smart home controllers, contrary to smart home services that emphasize intelligence and convenience. In order to provide intelligent smart home service, intuitive form of smart home controller is needed, which enables integrated control of smart home device. Therefore, this paper proposes a smart home remote control that can control the Internet devices and services of objects. The proposed smart home remote control provides an environment where users can build a smart home service through the IFTTT(If This Then That) automated service platform.

Toward Energy-Efficient Task Offloading Schemes in Fog Computing: A Survey

  • Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.

A Study on Data Management of Internet of Things (사물인터넷 데이터 관리에 관한 연구)

  • Xu, Chen-lin;Lee, Hyun Chang;Shin, Seong Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.208-210
    • /
    • 2014
  • IOT(Internet of Things) through Radio Frequency Identification (RFID), Wireless Sensors, Global Positioning Systems, Laser Scanners and other information sensing device, according to the agreed protocol keep anything connected to the Internet for information exchange and communication. It's a network what in order to achieve intelligent identify, locate, track, monitor and manage. With the development of IOT technology, data growth will explode once again on the existing basis, which gives data management enormous challenges. This paper described characteristics of data in IOT and analysis existing data management technologies, then proposed a data management framework to conduct the research on the data management of IOT.

  • PDF

A Wifi Smart Power Outlet for Remote Monitoring and Control of Power Consumption (원격 모니터링 및 제어가 가능한 와이파이 스마트 콘센트)

  • Kim, HongSeok;Na, Jae-Hwan;Park, So-Hyeon;Kwak, Sooyeong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.160-169
    • /
    • 2014
  • Along the era of "Internet of Things (IoT)" in which the physical objects can be connected to the Internet, a smart power management system is proposed in this paper. This system consists of two modules, an electrical outlet device embedding the Wi-Fi capabilities and a web server supporting the management as well as monitoring of power consumptions. Also, with the proposed system, a customer can easily check the status of power consumption and turn on/off the sockets through the developed mobile website. The proposed system is designed to avoid firewall or PC setting problems involving a user's inconvenience.

Design and Implementation of Personalized IoT Service base on Service Orchestration (서비스 오케스트레이션 기반 사용자 맞춤형 IoT 서비스의 설계 및 구현)

  • Cha, Siho;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.21-29
    • /
    • 2015
  • The Internet of Things (IoT) is an Infrastructure which allows to connect with each device in physical world through the Internet. Thus IoT enables to provide meahup services or intelligent services to human user using collected data from those devices. Due to these advantages, IoT is used in divers service domains such as traffic, distribution, healthcare, and smart city. However, current IoT provides restricted services because it only supports monitor and control devices according to collected data from the devices. To resolve this problem, we propose a design and implementation of personalized IoT service base on service orchestration. The proposed service allows to discover specific services and then to combine the services according to a user location. To this end, we develop a service ontology to interpret user information according to meanings and smartphone web app to use the IoT service by human user. We also develop a service platform to work with external IoT platform. Finally, to show feasibility, we evaluate the proposed system via study.

Cases of IT Based Innovation in a Hospital (IT관점의 병원혁신 사례)

  • Hwang, Einjeong
    • Korea Journal of Hospital Management
    • /
    • no.spc
    • /
    • pp.74-84
    • /
    • 2016
  • This research is for an innovative health information service cases based on Information Communication Technology (ICT), conducted at a general hospital in Korea. This study introduces a personal use self-diagnosis & self management device for pulmonary chronic disease patients, a mobile communication application service for doctor rounds, a surgical education system providing natural-user-interface with virtual reality for surgeons, and an Internet of things(IOT) technology using personal electrocardiogram (ECG) measurement device cases. Due to every case is on developing, there are still many issues needed to be improved. For this reason, various opinions with constructive critiques from the readers of this paper will be welcomed for better practical implementation.

A Study on the IOT-based devices for collaboration between algorithm design data (IOT 기반의 디바이스 간 협업데이터 전송을 위한 알고리즘 설계)

  • Lim, Hyeok;Kim, Hee-Yeol;Kim, Ho-Sung;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.603-605
    • /
    • 2015
  • Recent IoT (Internet Of Things) development of the technology is growing rapidly. When multiple devices to perform operations on the IoT environment, it is possible to improve the efficiency of operations by different devices to join the collaborative relationship (Relation) between. Research on existing methods and has been used and the user to issue commands to each device P2M (Person to Machine) method, is now being replaced by effective M2M (Machine to Machine) manner than by way bring forth the relationship between the device P2M. In this paper, we define the relationship between the device and bring forth proposals for collaborative data transfer algorithms. To block the operation duplicated between different work through the proposed algorithm and is believed to improve the efficiency of work to do.

  • PDF

An Implementation of an Intelligent Access Point System Based on a Feed Forward Neural Network for Internet of Things (사물인터넷을 위한 신경망 기반의 지능형 액세스 포인트 시스템의 구현)

  • Lee, Youngchan;Lee, SoYeon;Kim, Dae-Young
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.95-104
    • /
    • 2019
  • Various kinds of devices are used for the Internet of Things (IoT) service, and IoT devices mainly use communication technology that uses the frequency of the unlicensed band. There are several types of communication technology in the unlicensed band, but WiFi is most commonly used. Devices used for IoT services vary in computing resources from devices with limited capabilities to smartphones and provide services over wireless networks such as WiFi. Most IoT devices can't perform complex operations for network control, thus they choose a WiFi access point (AP) based on signal strength. This causes a decrease in IoT service efficiency. In this paper, an intelligent AP system that can efficiently control the WiFi connection of the IoT devices is implemented. Based on the network information measured by the IoT device, the access point learns using a feed forward neural network algorithm, and predicts a network connection state to control the WiFi connection. By controlling the WiFi connection at the AP, the service efficiency of the IoT device can be improved.